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We study simple nonlinear deterministic models that exhibit chaotic behavior. We will find that
the use of the computer to do numerical experiments will help us gain insight into the nature of
chaos.

6.1 Introduction to chaos

Most natural phenomena are intrinsically nonlinear. Weather patterns and the turbulent motion
of fluids are everyday examples. Although we have explored some of the properties of nonlinear
systems in Chapter 4, it is easier to introduce some of the important concepts in the context of
ecology. Our first goal will be to motivate and analyze the one-dimensional difference equation

xn+1 = 4rxn(1− xn), (6.1)

where xn is the ratio of the population in the nth generation to a reference population. We shall see
that the dynamical properties of (6.1) are surprisingly intricate and have important implications
for the development of a more general description of nonlinear phenomena. The significance of the
behavior of (6.1) is indicated by the following quote from the ecologist Robert May:

“Its study does not involve as much conceptual sophistication as does elementary calculus.
Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in
research but also in the everyday world of politics and economics we would all be better off if
more people realized that simple nonlinear systems do not necessarily possess simple dynamical
properties.”
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The study of chaos is of much current interest, but the phenomena is not new and has been
of interest, particularly to astronomers and mathematicians, for over one hundred years. Much of
the current interest is due to the use of the computer as a tool for making empirical observations.
We will use the computer in this spirit.

6.2 A Simple One-Dimensional Map

Imagine an island with an insect population that breeds in the summer and leaves eggs that hatch
the following spring. Because the population growth occurs at discrete times, it is appropriate to
model the population growth by a difference equation rather than by a differential equation. A
simple model of population growth that relates the population in generation n+1 to the population
in generation n is given by

Pn+1 = aPn, (6.2)

where Pn is the population in generation n and a is a constant. In the following, we will assume
that the time interval between generations is unity, and will refer to n as the time.

If a < 1, the population decreases at each generation and eventually the population becomes
extinct. If a > 1, each generation will be a times larger than the previous one. In this case (6.2)
leads to geometrical growth and an unbounded population. Although the unbounded nature of
geometrical growth is clear, it is remarkable that most of us do not integrate our understanding
of geometrical growth into our everyday lives. Can a bank pay 4% interest each year indefinitely?
Can the world’s human population grow at a constant rate forever?

It is natural to formulate a more realistic model in which the population is bounded by the
finite carrying capacity of its environment. A simple model of density-dependent growth is

Pn+1 = Pn(a− bPn). (6.3)

Equation (6.3) is nonlinear due to the presence of the quadratic term in Pn. The linear term
represents the natural growth of the population; the quadratic term represents a reduction of this
natural growth caused, for example, by overcrowding or by the spread of disease.

It is convenient to rescale the population by letting Pn = (a/b)xn and rewriting (6.3) as

xn+1 = axn(1− xn). (6.4)

The replacement of Pn by xn changes the units used to define the various parameters. To write
(6.4) in the standard form (6.1), we define the parameter r = a/4 and obtain

xn+1 = f(xn) = 4rxn(1− xn). (6.5)

The rescaled form (6.5) has the desirable feature that its dynamics are determined by a single
control parameter r instead of the two parameters a and b. Note that if xn > 1, xn+1 will be
negative. To avoid this unphysical feature, we impose the conditions that x is restricted to the
interval 0 ≤ x ≤ 1 and 0 < r ≤ 1. Because the function f(x) defined in (6.5) transforms any
point on the one-dimensional interval [0, 1] into another point in the same interval, the function f
is called a one-dimensional map.
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The form of f(x) in (6.5) is known as the logistic map. The logistic map is a simple example
of a dynamical system, that is, the map is a deterministic, mathematical prescription for finding
the future state of a system given its present state.

The sequence of values x0, x1, x2, . . . is called the trajectory. To check your understanding,
suppose that the initial value of x0 or seed is x0 = 0.5 and r = 0.2. Do a calculation to show
that the trajectory is x1 = 0.2, x2 = 0.128, x3 = 0.089293, . . . The first thirty iterations of (6.5) are
shown for two values of r in Figure 6.1.
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Figure 6.1: (a) The trajectory of x for r = 0.2 and x0 = 0.6. The stable fixed point is at x = 0.
(b) The trajectory for r = 0.7 and x0 = 0.1. Note the initial transient behavior.

The Iterate model in this chapter’s source code directory computes a table of values using a
map such as (6.2) or (6.5).

Exercise 6.1. Iteration

An iterative method for calculating the square root x of a number a is based on the observation
that x = a/x. If we guess the value of the root x and our guess is too small (large), then a/x will
be too large (small) and the average (x + a/x)/2 will be closer to the true value. The true value
of

√
a can therefore be found by iterating

xn+1 = (xn + a/xn)/2. (6.6)

Use the Iterate model to compute the square root of some representative numbers. Does the
algorithm always converge regardless of the initial guess x0? What happens if a is negative?

Problem 6.2. The trajectory of the logistic map

a. Modify the Iterate model to produce a plot of the trajectory to reproduce the results shown in
Figure 6.1.

b. Use your modified model to explore the dynamical behavior of the logistic map in (6.5) with
r = 0.24 for different values of x0. Show numerically that x = 0 is a stable fixed point for this
value of r. That is, the iterated values of x converge to x = 0 independently of the value of x0.
If x represents the population of insects, describe the qualitative behavior of the population.
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c. Explore the dynamical behavior of (6.5) for r = 0.26, 0.5, 0.74, and 0.748. A fixed point is
unstable if for almost all values of x0 near the fixed point, the trajectories diverge from it.
Verify that x = 0 is an unstable fixed point for r > 0.25. Show that for the suggested values
of r, the iterated values of x do not change after an initial transient, that is, the long time
dynamical behavior is period 1. In Appendix 6A we show that for r < 3/4 and for x0 in the
interval 0 < x0 < 1, the trajectories approach the stable attractor at x = 1 − 1/4r. The set of
initial points that iterate to the attractor is called the basin of the attractor. For the logistic
map, the interval 0 < x < 1 is the basin of attraction of the attractor x = 1− 1/4r.

d. Explore the dynamical properties of (6.5) for r = 0.752, 0.76, 0.8, and 0.862. For r = 0.752 and
0.862 approximately 1000 iterations are necessary to obtain convergent results. Show that if r
is greater than 0.75, x oscillates between two values after an initial transient behavior. That is,
instead of a stable cycle of period 1 corresponding to one fixed point, the system has a stable
cycle of period 2. The value of r at which the single fixed point x∗ splits or bifurcates into two
values x1

∗ and x2
∗ is r = b1 = 3/4. The pair of x values, x1

∗ and x2
∗, form a stable attractor

of period 2.

e. What are the stable attractors of (6.5) for r = 0.863 and 0.88? What is the corresponding
period? What are the stable attractors and corresponding periods for r = 0.89, 0.891, and
0.8922?

A more elegant and useful way to determine the behavior of (6.5) is to plot the long-term
values of x as a function of r (see Figure 6.2). The Logistic Bifurcation model in this chapter’s
source directory plots the iterated values of x after the initial transient behavior is discarded. Such
a plot is called a bifurcation diagram and is generated by Bifurcate model. For each value of r, the
first nTransient values of x are computed but not plotted. Then the next nPlot values of x are
plotted, with the first half in one color and the second half in another. This process is repeated
for a new value of r during every evolution step until the desired range of r values is reached. The
magnitude of nPlot should be at least as large as the longest period that you wish to observe.

Problem 6.3. Qualitative features of the logistic map

a. Use the Logistic Bifurcation model to identify period 2, period 4, and period 8 behavior as can
be seen in Figure 6.2. Choose nTransient ≥ 1000. It might be necessary to “zoom in” on a
portion of the plot. How many period doublings can you find?

b. Change the scale so that you can follow the iterations of x from period 4 to period 16 behavior.
How does the plot look on this scale in comparison to the original scale?

c. Describe the shape of the trajectory near the bifurcations from period 2 to period 4, period 4
to 8, etc. These bifurcations are frequently called pitchfork bifurcations.

The bifurcation diagram in Figure 6.2 indicates that the period doubling behavior ends at
r ≈ 0.892. This value of r is known very precisely and is given by r = r∞ = 0.892486417967 . . .
At r = r∞, the sequence of period doublings accumulate to a trajectory of infinite period. In
Problem 6.4 we explore the behavior of the trajectories for r > r∞.

Problem 6.4. Chaotic behavior
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Figure 6.2: Bifurcation diagram of the logistic map. For each value of r, the iterated values of
xn are plotted after the first 1000 iterations are discarded. Note the transition from periodic to
chaotic behavior and the narrow windows of periodic behavior within the region of chaos.

a. For r > r∞, two initial conditions that are very close to one another can yield very different
trajectories after a few iterations. As an example, choose r = 0.91 and consider x0 = 0.5 and
0.5001. How many iterations are necessary for the iterated values of x to differ by more than
ten percent? What happens for r = 0.88 for the same choice of seeds?

b. The accuracy of floating point numbers retained on a digital computer is finite. To test the
effect of the finite accuracy of your computer, choose r = 0.91 and x0 = 0.5 and compute
the trajectory for 200 iterations. Then modify your program so that after each iteration, the
operation x = x/10 is followed by x = 10*x. This combination of operations truncates the last
digit that your computer retains. Compute the trajectory again and compare your results. Do
you find the same discrepancy for r < r∞?

c. What are the dynamical properties for r = 0.958? Can you find other windows of periodic
behavior in the interval r∞ < r < 1?

6.3 Period Doubling

The results of the numerical experiments that we did in Section 6.2 probably have convinced you
that the dynamical properties of a simple nonlinear deterministic system can be quite complicated.
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To gain more insight into how the dynamical behavior depends on r, we introduce a simple
graphical method for iterating (6.5). In Figure 6.3 we show a graph of f(x) versus x for r = 0.7. A
diagonal line corresponding to y = x intersects the curve y = f(x) at the two fixed points x∗ = 0
and x∗ = 9/14 ≈ 0.642857 (see (6.7b)). If x0 is not a fixed point, we can find the trajectory in
the following way. Draw a vertical line from (x = x0, y = 0) to the intersection with the curve
y = f(x) at (x0, y0 = f(x0)). Next draw a horizontal line from (x0, y0) to the intersection with the
diagonal line at (y0, y0). On this diagonal line y = x, and hence the value of x at this intersection
is the first iteration x1 = y0. The second iteration x2 can be found in the same way. From the
point (x1, y0), draw a vertical line to the intersection with the curve y = f(x). Keep y fixed at
y = y1 = f(x1), and draw a horizontal line until it intersects the diagonal line; the value of x at
this intersection is x2. Further iterations can be found by repeating this process.
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Figure 6.3: Graphical representation of the iteration of the logistic map (6.5) with r = 0.7 and
x0 = 0.9. Note that the graphical solution converges to the fixed point x∗ ≈ 0.643.

This graphical method is illustrated in Figure 6.3 for r = 0.7 and x0 = 0.9. If we begin with
any x0 (except x0 = 0 and x0 = 1), the iterations will converge to the fixed point x∗ ≈ 0.643. It
would be a good idea to repeat the procedure shown in Figure 6.3 by hand. For r = 0.7, the fixed
point is stable (an attractor of period 1). In contrast, no matter how close x0 is to the fixed point
at x = 0, the iterates diverge away from it, and this fixed point is unstable.

How can we explain the qualitative difference between the fixed point at x = 0 and at x∗ =
0.642857 for r = 0.7? The local slope of the curve y = f(x) determines the distance moved
horizontally each time f is iterated. A slope steeper than 45◦ leads to a value of x further away
from its initial value. Hence, the criterion for the stability of a fixed point is that the magnitude
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of the slope at the fixed point must be less than 45◦. That is, if |df(x)/dx|x=x∗ is less than unity,
then x∗ is stable; conversely, if |df(x)/dx|x=x∗ is greater than unity, then x∗ is unstable.

An inspection of f(x) in Figure 6.3 shows that x = 0 is unstable because the slope of f(x) at
x = 0 is greater than unity. In contrast, the magnitude of the slope of f(x) at x = x∗ ≈ 0.643 is
less than unity and this fixed point is stable. In Appendix 6A, we show that

x∗ = 0 is stable for 0 < r < 1/4, (6.7a)

and

x∗ = 1− 1

4r
is stable for 1/4 < r < 3/4. (6.7b)

Thus for 0 < r < 3/4, the behavior after many iterations is known.

What happens if r is greater than 3/4? We found in Section 6.2 that if r is slightly greater
than 3/4, the fixed point of f becomes unstable and bifurcates to a cycle of period 2. Now x
returns to the same value after every second iteration, and the fixed points of f

(
f(x)

)
are the

stable attractors of f(x). In the following, we write f (2)(x) = f
(
f(x)

)
and f (n)(x) for the nth

iterate of f(x). (Do not confuse f (n)(x) with the nth derivative of f(x).) For example, the second
iterate f (2)(x) is given by the fourth-order polynomial:

f (2)(x) = 4r
[
4rx(1− x)

]
− 4r

[
4rx(1− x)

]2
= 4r[4rx(1− x)]

[
1− 4rx(1− x)

]
= 16r2x

[
− 4rx3 + 8rx2 − (1 + 4r)x+ 1

]
. (6.8)

What happens if we increase r still further? Eventually the magnitude of the slope of the fixed
points of f (2)(x) exceeds unity and the fixed points of f (2)(x) become unstable. Now the cycle of
f is period 4, and the fixed points of the fourth iterate f (4)(x) = f (2)

(
f (2)(x)

)
= f

(
f
(
f(f(x)

))
are stable. These fixed points also eventually become unstable, and we are led to the phenomena
of period doubling that we observed in Problem 6.3.

The Logistic Cobweb model in the chapter’s code directory implements the graphical anal-
ysis of the iterations of f(x). The nth order iterates are defined using the recursive method
f(x,iterate) shown in Listing 6.1. (The parameter iterate is 1, 2, and 4 for the functions f(x),
f (2)(x), and f (4)(x) respectively and the value of the control parameter is 0.8.) Recursion is an
idea that is simple once you understand it, but it can be difficult to grasp initially. Although the
method calls itself, the rules for method calls remain the same. Imagine that a recursive method
is called. The computer then starts to execute the code in the method, but comes to another call
of the same method as itself. At this point the computer stops executing the code of the original
method, and makes an exact copy of the method with possibly different input parameters, and
starts executing the code in the copy. There are now two possibilities. One is that the computer
comes to the end of the copy without another recursive call. In that case the computer deletes the
copy of the method and continues executing the code in the original method. The other possibility
is that a recursive call is made in the copy, and a third copy is made of the method, and the code in
the third copy is now executed. This process continues until the code in all the copies is executed.
Every recursive method must have a possibility of reaching the end of the method; otherwise, the
program will eventually crash.
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Figure 6.4: Example of the calculation of f(0.4,3) using the recursive function defined in the
Logistic Cobweb model. The number in each box is the value of the variable iterate. The
computer executes code from left to right, and each box represents a copy of the function in the
computer’s memory. The input values x = 0.4 and r = 0.8, which are the same in each copy, are
not shown. The arrows indicate when a copy is finished and its value is returned to one of the
other copies. Notice that the first copy of the function, f(3), is the last one to finish. The value of
f(x,3) = 0.7842.

Listing 6.1: The f(x,iterate) custom method evaluates the logistic function recursively.

public double f (double x , int i t e r a t e ) {
x=4*r *x*(1−x ) ; // compute new x
i f ( i t e r a t e==1) return x ;

else return f ( x , i t e r a t e −1);
}

To understand the method f(x,iterate), suppose we want to compute f(0.4,3). First we
write f(0.4,3) as in Figure 6.4a. Follow the statements within the method until another call to
f(0.4,iterate) occurs. In this case, the call is to f(0.4,iterate-1) which equals f(0.4,2).
Write f(0.4,2) above f(0.4,3) (see Figure 6.4b). When you come to the end of the definition of
the method, write down the value of f that is actually returned, and remove the method from the
stack by crossing it out (see Figure 6.4d). This returned value for f equals y if iterate > 1, or
it is the value of the logistic function for iterate = 1. Continue deleting copies of f as they are
finished, until there are no copies left on the paper. The final value of f is the value returned by
the computer.

Exercise 6.5. Recursion

Create a simple model that defines the control parameter r and the f(x,iterate) custom
method and prints the value of the input parameters x and iterate when the method is invoked.
Test your method with f(0.4,3). Is the answer the same as your hand calculation?

Problem 6.6. Qualitative properties of the fixed points

a. Use the Logistic Cobweb model to show graphically that there is a single stable fixed point of
f(x) for r < 3/4. It would be instructive to modify the program so that the value of the slope
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df/dx|x=xn is shown as you step each iteration. At what value of r does the absolute value of
this slope exceed unity? Let b1 denote the value of r at which the fixed point of f(x) bifurcates
and becomes unstable. Verify that b1 = 0.75.

b. Describe the trajectory of f(x) for r = 0.785. Is the fixed point given by x = 1 − 1/4r stable
or unstable? What is the nature of the trajectory if x0 = 1− 1/4r? What is the period of f(x)
for all other choices of x0? What are the values of the two-point attractor?

c. The function f(x) is symmetrical about x = 1/2 where f(x) is a maximum. What are the
qualitative features of the second iterate f (2)(x) for r = 0.785? Is f (2)(x) symmetrical about
x = 1/2? For what value of x does f (2)(x) have a minimum? Iterate xn+1 = f (2)(xn) for
r = 0.785 and find its two fixed points x1

∗ and x2
∗. (Try x0 = 0.1 and x0 = 0.3.) Are the fixed

points of f (2)(x) stable or unstable for this value of r? How do these values of x1
∗ and x2

∗

compare with the values of the two-point attractor of f(x)? Verify that the slopes of f (2)(x) at
x1

∗ and x2
∗ are equal.

d. Verify the following properties of the fixed points of f (2)(x). As r is increased, the fixed points
of f (2)(x) move apart and the slope of f (2)(x) at its fixed points decreases. What is the value
of r = s2 at which one of the two fixed points of f (2) equals 1/2? What is the value of the
other fixed point? What is the slope of f (2)(x) at x = 1/2? What is the slope at the other
fixed point? As r is further increased, the slopes at the fixed points become negative. Finally
at r = b2 ≈ 0.8623, the slopes at the two fixed points of f (2)(x) equal −1, and the two fixed
points of f (2) become unstable. (The exact value of b2 is b2 = (1 +

√
6)/4.)

e. Show that for r slightly greater than b2, for example, r = 0.87, there are four stable fixed points
of f (4)(x). What is the value of r = s3 when one of the fixed points equals 1/2? What are the
values of the three other fixed points at r = s3?

f. Determine the value of r = b3 at which the four fixed points of f (4) become unstable.

g. Choose r = s3 and determine the number of iterations that are necessary for the trajectory to
converge to period 4 behavior. How does this number of iterations change when neighboring
values of r are considered? Choose several values of x0 so that your results do not depend on
the initial conditions.

Problem 6.7. Periodic windows in the chaotic regime

a. If you look closely at the bifurcation diagram in Figure 6.2, you will see that the range of
chaotic behavior for r > r∞ is interrupted by intervals of periodic behavior. Magnify your
bifurcation diagram so that you can look at the interval 0.957107 ≤ r ≤ 0.960375, where a
periodic trajectory of period 3 occurs. (Period 3 behavior starts at r = (1 +

√
8)/4.) What

happens to the trajectory for slightly larger r, for example, r = 0.9604?

b. Plot f (3)(x) versus x at r = 0.96, a value of r in the period 3 window. Draw the line y = x
and determine the intersections with f (3)(x). The stable fixed points satisfy the condition x∗ =
f (3)(x∗). Because f (3)(x) is an eighth-order polynomial, there are eight solutions (including x =
0). Find the intersections of f (3)(x) with y = x and identify the three stable fixed points. What
are the slopes of f (3)(x) at these points? Then decrease r to r = 0.957107, the (approximate)
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value of r below which the system is chaotic. Draw the line y = x and determine the number of
intersections with f (3)(x). Note that at this value of r, the curve y = f (3)(x) is tangent to the
diagonal line at the three stable fixed points. For this reason, this type of transition is called a
tangent bifurcation. Note that there also is an unstable point at x ≈ 0.76.

c. Plot xn+1 = f (3)(xn) versus n for r = 0.9571, a value of r just below the onset of period 3
behavior. How would you describe the behavior of the trajectory? This type of chaotic motion is
an example of intermittency , that is, nearly periodic behavior interrupted by occasional irregular
bursts.

d. To understand the mechanism for the intermittent behavior, we need to “zoom in” on the values
of x near the stable fixed points that you found in part (c). To do so change the scale of the
plot. You will see a narrow channel between the diagonal line y = x and the plot of f (3)(x) near
each fixed point. The trajectory can require many iterations to squeeze through the channel,
and we see apparent period 3 behavior during this time. Eventually, the trajectory escapes from
the channel and bounces around until it is again enters a channel at some unpredictable later
time.

6.4 Universal Properties and Self-Similarity

In Sections 6.2 and 6.12 we found that the trajectory of the logistic map has remarkable properties
as a function of the control parameter r. In particular, we found a sequence of period doublings
accumulating in a chaotic trajectory of infinite period at r = r∞. For most values of r > r∞,
the trajectory is very sensitive to the initial conditions. We also found “windows” of period 3, 6,
12, . . . embedded in the range of chaotic behavior. How typical is this type of behavior? In the
following, we will find further numerical evidence that the general behavior of the logistic map is
independent of the details of the form (6.5) of f(x).

You might have noticed that the range of r between successive bifurcations becomes smaller
as the period increases (see Table 6.1). For example, b2 − b1 = 0.112398, b3 − b2 = 0.023624, and
b4 − b3 = 0.00508. A good guess is that the decrease in bk − bk−1 is geometric, that is, the ratio
(bk − bk−1)/(bk+1 − bk) is a constant. You can check that this ratio is not exactly constant, but
converges to a constant with increasing k. This behavior suggests that the sequence of values of
bk has a limit and follows a geometrical progression:

bk ≈ r∞ − C δ−k, (6.9)

where δ is known as the Feigenbaum number and C os a constant. From (6.9) it is easy to show
that δ is given by the ratio

δ = lim
k→∞

bk − bk−1

bk+1 − bk
. (6.10)

Problem 6.8. Estimation of the Feigenbaum constant

a. Derive the relation (6.10) given (6.9). Plot δk = (bk − bk−1)/(bk+1 − bk) versus k using the
values of bk in Table 6.1 and determine the value of δ. Are the number of decimal places given
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k bk
1 0.750 000
2 0.862 372
3 0.886 023
4 0.891 102
5 0.892 190
6 0.892 423
7 0.892 473
8 0.892 484

Table 6.1: Values of the control parameter r = bk for the onset of the kth bifurcation. Six decimal
places are shown.

in Table 6.1 for bk sufficient for all the values of k shown? The best numerical determination of
δ is

δ = 4.669 201 609 102 991 . . . (6.11)

The number of decimal places in (6.11) is shown to indicate that δ is known precisely. Use (6.9)
and (6.11) and the values of bk to determine the value of r∞.

b. In Problem 6.6 we found that one of the four fixed points of f (4)(x) is at x∗ = 1/2 for r =
s3 ≈ 0.87464. We also found that the convergence to the fixed points of f (4)(x) for this value
of r is more rapid than at nearby values of r. In Appendix 6A we show that these superstable
trajectories occur whenever one of the fixed points is at x∗ = 1/2. The values of r = sm
that give superstable trajectories of period 2m−1 are much better defined than the points of
bifurcation, r = bk. The rapid convergence to the final trajectories also gives better numerical
results, and we always know one member of the trajectory, namely x = 1/2. Assume that
δ can be defined as in (6.10) with bk replaced by sm. Use s1 = 0.5, s2 ≈ 0.809017, and
s3 = 0.874640 to determine δ. The numerical values of sm are found in Project 6.16 by solving
the equation f (m)(x = 1/2) = 1/2 numerically; the first eight values of sm are listed in Table 6.2
in Section 6.11.

We can associate another number with the series of “pitchfork” bifurcations. From Figures 6.3
and 6.5 we see that each pitchfork bifurcation gives birth to “twins” with the new generation more
densely packed than the previous generation. One measure of this density is the maximum distance
Mk between the values of x describing the bifurcation (see Figure 6.5). The disadvantage of using
Mk is that the transient behavior of the trajectory is very long at the boundary between two
different periodic behaviors. A more convenient measure of the distance is the quantity dk =
xk

∗ − 1/2, where xk* is the value of the fixed point nearest to the fixed point x∗ = 1/2. The first
two values of dk are shown in Figure 6.6 with d1 ≈ 0.3090 and d2 ≈ −0.1164. The next value is
d3 ≈ 0.0460. Note that the fixed point nearest to x = 1/2 alternates from one side of x = 1/2 to
the other. We define the quantity α by the ratio

α = lim
k→∞

−
( dk
dk+1

)
. (6.12)
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Figure 6.5: The first few bifurcations of the logistic equation showing the scaling of the maximum
distance Mk between the asymptotic values of x describing the bifurcation.

The ratios α = (0.3090/0.1164) = 2.65 for k = 1 and α = (0.1164/0.0460) = 2.53 for k = 2 are
consistent with the asymptotic value α = 2.5029078750958928485 . . .

We now give qualitative arguments that suggest that the general behavior of the logistic map
in the period doubling regime is independent of the detailed form of f(x). As we have seen, period
doubling is characterized by self-similarities, for example, the period doublings look similar except
for a change of scale. We can demonstrate these similarities by comparing f(x) for r = s1 = 0.5
for the superstable trajectory with period 1 to the function f (2)(x) for r = s2 ≈ 0.809017 for the
superstable trajectory of period 2 (see Figure 6.7). The function f(x, r = s1) has unstable fixed
points at x = 0 and x = 1 and a stable fixed point at x = 1/2. Similarly the function f (2)(x, r = s2)
has a stable fixed point at x = 1/2 and an unstable fixed point at x ≈ 0.69098. Note the similar
shape, but different scale of the curves in the square boxes in part (a) and part (b) of Figure 6.7.
This similarity is an example of scaling. That is, if we scale f (2) and change (renormalize) the value
of r, we can compare f (2) to f . (See Chapter ?? for a discussion of scaling and renormalization in
another context.)

This graphical comparison is meant only to be suggestive. A precise approach shows that if
we continue the comparison of the higher-order iterates, for example, f (4)(x) to f (2)(x), etc., the
superposition of functions converges to a universal function that is independent of the form of the
original function f(x).

Problem 6.9. Further determinations of the exponents α and δ
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Figure 6.6: The quantity dk is the distance from x∗ = 1/2 to the nearest element of the attractor
of period 2k. It is convenient to use this quantity to determine the exponent α.

1. Determine the appropriate scaling factor and superimpose f and the rescaled form of f (2)

found in Figure 6.7.

2. Use arguments similar to those discussed in the text and in Figure 6.7 and compare the
behavior of f (4)(x, r = s3) in the square about x = 1/2 with f (2)(x, r = s2) in its square
about x = 1/2. The size of the squares are determined by the unstable fixed point nearest
to x = 1/2. Find the appropriate scaling factor and superimpose f (2) and the rescaled form
of f (4).

∗Problem 6.10. Other one-dimensional maps

It is easy to modify your programs to consider other one-dimensional maps. Determine the quali-
tative properties of the one-dimensional maps:

f(x) = xer(1−x) (6.13)

f(x) = r sinπx. (6.14)

Do they also exhibit the period doubling route to chaos? The map in (6.13) has been used by
ecologists (cf. May) to study a population that is limited at high densities by the effect of epidemics.
Although it is more complicated than (6.5), its advantage is that the population remains positive
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Figure 6.7: Comparison of f(x, r) for r = s1 with the second iterate f (2)(x) for r = s2. (a) The
function f(x, r = s1) has unstable fixed points at x = 0 and x = 1 and a stable fixed point at
x = 1/2. (b) The function f (2)(x, r = s1) has a stable fixed point at x = 1/2. The unstable fixed
point of f (2)(x) nearest to x = 1/2 occurs at x ≈ 0.69098, where the curve f (2)(x) intersects the
line y = x. The upper right-hand corner of the square box in (b) is located at this point, and the
center of the box is at (1/2, 1/2). Note that if we reflect this square about the point (1/2, 1/2),
the shape of the reflected graph in the square box is nearly the same as it is in part (a), but on a
smaller scale.

no matter what (positive) value is taken for the initial population. There are no restrictions on
the maximum value of r, but if r becomes sufficiently large, x eventually becomes effectively zero.
What is the behavior of the time series of (6.13) for r = 1.5, 2, and 2.7? Describe the qualitative
behavior of f(x). Does it have a maximum?

The sine map (6.14) with 0 < r ≤ 1 and 0 ≤ x ≤ 1 has no special significance, except that it
is nonlinear. If time permits, determine the approximate value of δ for both maps. What limits
the accuracy of your determination of δ?

The above qualitative arguments and numerical results suggest that the quantities α and δ are
universal , that is, independent of the detailed form of f(x). In contrast, the values of the accumu-
lation point r∞ and the constant C in (6.9) depend on the detailed form of f(x). Feigenbaum has
shown that the period doubling route to chaos and the values of δ and α are universal properties
of maps that have a quadratic maximum, that is, f ′(x)|x=xm

= 0 and f ′′(x)|x=xm
< 0.

Why is the universality of period doubling and the numbers δ and α more than a curiosity?
The reason is that because this behavior is independent of the details, there might exist realistic
systems whose underlying dynamics yield the same behavior as the logistic map. Of course, most
physical systems are described by differential rather than difference equations. Can these systems
exhibit period doubling behavior? Several workers (cf. Testa et al.) have constructed nonlinear
RLC circuits driven by an oscillatory source voltage. The output voltage shows bifurcations, and
the measured values of the exponents δ and α are consistent with the predictions of the logistic
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map.

Of more general interest is the nature of turbulence in fluid systems. Consider a stream
of water flowing past several obstacles. We know that at low flow speeds, the water flows past
obstacles in a regular and time-independent fashion, called laminar flow. As the flow speed is
increased (as measured by a dimensionless parameter called the Reynolds number), some swirls
develop, but the motion is still time-independent. As the flow speed is increased still further,
the swirls break away and start moving downstream. The flow pattern as viewed from the bank
becomes time-dependent. For still larger flow speeds, the flow pattern becomes very complex and
looks random. We say that the flow pattern has made a transition from laminar flow to turbulent
flow.

This qualitative description of the transition to chaos in fluid systems is superficially similar
to the description of the logistic map. Can fluid systems be analyzed in terms of the simple models
of the type we have discussed here? In a few instances such as turbulent convection in a heated
saucepan, period doubling and other types of transitions to turbulence have been observed. The
type of theory and analysis we have discussed has suggested new concepts and approaches, and
the study of turbulent flow is a subject of much current interest.

6.5 Measuring Chaos

How do we know if a system is chaotic? The most important characteristic of chaos is sensitivity
to initial conditions. In Problem 6.4 for example, we found that the trajectories starting from
x0 = 0.5 and x0 = 0.5001 for r = 0.91 become very different after a small number of iterations.
Because computers only store floating numbers to a certain number of digits, the implication of
this result is that our numerical predictions of the trajectories of chaotic systems are restricted to
small time intervals. That is, sensitivity to initial conditions implies that even though the logistic
map is deterministic, our ability to make numerical predictions of its trajectory is limited.

How can we quantify this lack of predictably? In general, if we start two identical dynamical
systems from slightly different initial conditions, we expect that the difference between the trajec-
tories will increase as a function of n. In Figure 6.8 we show a plot of the difference |∆xn| versus
n for the same conditions as in Problem 6.4a. We see that roughly speaking, ln |∆xn| is a linearly
increasing function of n. This result indicates that the separation between the trajectories grows
exponentially if the system is chaotic. This divergence of the trajectories can be described by the
Lyapunov exponent λ, which is defined by the relation:

|∆xn| = |∆x0| eλn, (6.15)

where ∆xn is the difference between the trajectories at time n. If the Lyapunov exponent λ is
positive, then nearby trajectories diverge exponentially. Chaotic behavior is characterized by the
exponential divergence of nearby trajectories.

A naive way of measuring the Lyapunov exponent λ is to run the same dynamical system
twice with slightly different initial conditions and measure the difference of the trajectories as a
function of n. We used this method to generate Figure 6.8. Because the rate of separation of the
trajectories might depend on the choice of x0, a better method would be to compute the rate of
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Figure 6.8: The evolution of the difference ∆xn between the trajectories of the logistic map at
r = 0.91 for x0 = 0.5 and x0 = 0.5001. The separation between the two trajectories increases with
n, the number of iterations, if n is not too large. (Note that |∆x1| ∼ 10−8 and that the trend is
not monotonic.)

separation for many values of x0. This method would be tedious, because we would have to fit the
separation to (6.15) for each value of x0 and then determine an average value of λ.

A more important limitation of the naive method is that because the trajectory is restricted
to the unit interval, the separation |∆xn| ceases to increase when n becomes sufficiently large.
Fortunately, there is a better way of determining λ. We take the natural logarithm of both sides
of (6.15), and write λ as

λ =
1

n
ln

∣∣∣∣∆xn

∆x0

∣∣∣∣. (6.16)

Because we want to use the data from the entire trajectory after the transient behavior has ended,
we use the fact that

∆xn

∆x0
=

∆x1

∆x0

∆x2

∆x1
· · · ∆xn

∆xn−1
. (6.17)

Hence, we can express λ as

λ =
1

n

n−1∑
i=0

ln

∣∣∣∣∆xi+1

∆xi

∣∣∣∣. (6.18)

The form (6.18) implies that we can interpret xi for any i as the initial condition.

We see from (6.18) that the problem of computing λ has been reduced to finding the ratio
∆xi+1/∆xi. Because we want to make the initial difference between the two trajectories as small
as possible, we are interested in the limit ∆xi → 0.
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Figure 6.9: The Lyapunov exponent calculated using the method in (6.20) as a function of the
control parameter r. Compare the behavior of λ to the bifurcation diagram in Figure 6.2. Note
that λ < 0 for r < 3/4 and approaches zero at a period doubling bifurcation. A negative spike
corresponds to a superstable trajectory. The onset of chaos is visible near r = 0.892, where λ
first becomes positive. For r & 0.892, λ generally increases except for dips below zero whenever
a periodic window occurs, for example, the dip due to the period 3 window near r = 0.96. For
each value of r, the first 1000 iterations were discarded, and 105 values of ln |f ′(xn)| were used to
determine λ.

The idea of the more sophisticated procedure is to compute dxi+1/dxi from the equation of
motion at the same time that the equation of motion is being iterated. We use the logistic map as
an example. From (6.5) we have

dxi+1

dxi
= f ′(xi) = 4r(1− 2xi). (6.19)

We can consider xi for any i as the initial condition and the ratio dxi+1/dxi as a measure of the
rate of change of xi. Hence, we can iterate the logistic map as before and use the values of xi and
the relation (6.19) to compute f ′(xi) = dxi+1/dxi at each iteration. The Lyapunov exponent is
given by

λ = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)| , (6.20)

where we begin the sum in (6.20) after the transient behavior is finished. We have included
explicitly the limit n → ∞ in (6.20) to remind ourselves to choose n sufficiently large. Note that
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this procedure weights the points on the attractor correctly, that is, if a particular region of the
attractor is not visited often by the trajectory, it does not contribute much to the sum in (6.20).

Exercise 6.11. Nearby trajectories

Create model to reproduce Figure 6.8 and compute the Lyapunov exponent λ using the naive
approach. Choose r = 0.91, x0 = 0.5, and ∆x0 = 10−6, and plot ln |∆xn/∆x0| versus n. What
happens to ln |∆xn/∆x0| for large n? Determine λ for r = 0.91, r = 0.97, and r = 1.0. Does your
result for λ for each value of r depend significantly on your choice of x0 or ∆x0?

Problem 6.12. Lyapunov exponent for the logistic map

a. Use the Logistic Lyapunov model to study λ using the algorithm discussed in the text for
r = 0.76 to r = 1.0 in steps of ∆r = 0.01. What is the sign of λ if the system is not chaotic?
Plot λ versus r, and explain your results in terms of behavior of the bifurcation diagram shown
in Figure 6.2. Compare your results for λ with those shown in Figure 6.9. How does the sign of
λ correlate with the behavior of the system as seen in the bifurcation diagram? For what value
of r is λ a maximum?

b. In Problem 6.4b we saw that roundoff errors in the chaotic regime make the computation of
individual trajectories meaningless. That is, if the system’s behavior is chaotic, then small
roundoff errors are amplified exponentially in time, and the actual numbers we compute for the
trajectory starting from a given initial value are not “real.” Repeat your calculation of λ for
r = 1 by changing the roundoff error as you did in Problem 6.4b. Does your computed value of
λ change? How meaningful is your computation of the Lyapunov exponent? We will encounter
a similar question in Chapter 8 where we compute the trajectories of chaotic systems of many
particles. We will find that although the “true” trajectories cannot be computed for long times,
averages over the trajectories yield meaningful results.

We have found that nearby trajectories diverge if λ > 0. For λ < 0, the two trajectories
converge and the system is not chaotic. What happens for λ = 0? In this case we will see that
the trajectories diverge algebraically, that is, as a power of n. In some cases a dynamical system
is at the “edge of chaos” where the Lyapunov exponent vanishes. Such systems are said to exhibit
weak chaos to distinguish their behavior from the strongly chaotic behavior (λ > 0) that we have
been discussing.

If we define z ≡ |∆xn|/|∆x0|, then z will satisfy the differential equation

dz

dn
= λz. (6.21)

For weak chaos we do not find an exponential divergence, but instead a divergence that is algebraic
and is given by

dz

dn
= λqz

q, (6.22)

where q is a parameter that needs to be determined. The solution to (6.22) is

z = [1 + (1− q)λqn]
1/(1−q), (6.23)
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which can be checked by substituting (6.23) into (6.22). In the limit q → 1, we recover the usual
exponential dependence.

We can determine the type of chaos using the crude approach of choosing a large number of
initial values of x0 and x0 +∆x0 and plotting the average of ln z versus n. If we do not obtain a
straight line, then the system does not exhibit strong chaos. How can we check for the behavior
shown in (6.23)? The easiest way is to plot the quantity

z1−q − 1

1− q
(6.24)

versus n, which will equal nλq if (6.23) is applicable. We explore these ideas in the following
problem.

∗Problem 6.13. Measuring weak chaos

a. Write a program that plots ln z if q = 1 or zq if q ̸= 1 as a function of n. Your program
should have q, |∆x0|, the number of seeds, and the number of iterations as input parameters.
To compare with work by Añaños and Tsallis, use a variation of the logistic map given by

xn+1 = 1− ax2
n, (6.25)

where |xn| ≤ 1 and 0 ≤ a ≤ 2. The seeds x0 should be equally spaced in the interval |x0| < 1.

b. Consider strong chaos at a = 2. Choose q = 1, 50 iterations, at least 1000 values of x0, and
|∆x0| = 10−6. Do you obtain a straight line for ln z versus n? Does zn eventually stop increasing
as a function of n? If so why? Try |∆x0| = 10−12. How do your results differ and how are they
the same? Also iterate ∆x directly:

∆xn+1 = xn+1 − x̃n+1 = −a(x2
n − x̃2

n) = −a(xn − x̃n)(xn + x̃n) = −a∆xn(xn + x̃n), (6.26)

where xn is the iterate starting at x0 and x̃n is the iterate starting at x0 + ∆x0. Show that
straight lines are not obtained for your plot if q ̸= 1.

c. The edge of chaos for this map is at a = 1.401155189. Repeat part (a) for this value of a
and various values of q. Simulations with 105 values of x0 points show that linear behavior is
obtained for q ≈ 0.36.

A system of fixed energy (and number of particles and volume) has an equal probability of
being in any microstate specified by the positions and velocities of the particles (see Sec ??). One
way of measuring the ability of a system to be in any state is to measure its entropy defined by

S = −
∑
i

pi ln pi, (6.27)

where the sum is over all states and pi is the probability or relative frequency of being in the ith
state. For example, if the system is always in only one state, then S = 0, the smallest possible
entropy. If the system explores all states equally, then S = lnΩ, where Ω is the number of possible
states. (You can show this result by letting pi = 1/Ω.)
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∗Problem 6.14. Entropy of the logistic map

a. Write a program to compute S for the logistic map. Divide the interval [0, 1] into bins or
subintervals of width ∆x = 0.01 and determine the relative number of times the trajectory falls
into each bin. At each value of r in the range 0.7 ≤ r ≤ 1. the map should be iterated for a
fixed number of steps, for example, n = 1000. Choose ∆x = 0.01. What happens to the entropy
when the trajectory is chaotic?

b. Repeat part (a) with n = 10000. For what values of r does the entropy change significantly?
Decrease ∆x to 0.001 and repeat. Does this decrease make a difference?

c. Plot pi as a function of x for r = 1. For what value(s) of x is the plot a maximum?

We also can measure the (generalized) entropy as a function of time. As we will see in
Problem 6.15, S(n) for strong chaos increases linearly with n until all the possible states are
visited. However, for weak chaos this behavior is not found. In the latter case we can generalize
the entropy to a q-dependent function defined by

Sq =
1−

∑
i p

q
i

q − 1
. (6.28)

In the limit q → 1, Sq → S. The following problem discusses measuring the entropy for the same
system as in Problem 6.13.

∗Problem 6.15. Entropy of weak and strong chaotic systems

a. Write a program that iterates the map (6.25) and plots S if q = 1 or Sq if q ̸= 1 as a function
of n. The input parameters should be q, the number of bins, the number of random seeds in
a single bin, and n, the number of iterations. At each iteration compute the entropy. Then
average S over the randomly chosen values of the seeds.

b. Consider strong chaos at a = 2. Choose q = 1, n = 20, at ∆x ≤ 0.001, and ten times as
randomly chosen seeds per bin. Do you obtain a straight line for S versus n? Does the curve
eventually stop growing? If you decrease ∆x, how do your results differ and how are they the
same? Show that S is not a linear function of n if q ̸= 1.

c. Repeat part (a) with a = 1.401155189 and various values of q. Simulations with 105 bins
show that linear behavior is obtained for q ≈ 0.36, the same value as for the measurements in
Problem 6.13.
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6.6 *Controlling Chaos

6.7 Higher-Dimensional Models

6.8 Forced Damped Pendulum

6.9 *Hamiltonian Chaos

6.10 Perspective

As the many books and review articles on chaos can attest, it is impossible to discuss all aspects
of chaos in a single chapter. We will revisit chaotic systems in Chapter ?? where we introduce
the concept of fractals. We will find that one of the characteristics of chaotic dynamics is that the
resulting attractors often have an intricate geometrical structure.

The most general ideas that we have discussed in this chapter are that simple systems can
exhibit complex behavior and that chaotic systems exhibit extreme sensitivity to initial conditions.
We also have learned that computers allow us to explore the behavior of dynamical systems and
visualize the numerical output. However, the simulation of a system does not automatically lead
to understanding. If you are interested in learning more about the phenomena of chaos and the
associated theory, the suggested readings at the end of the chapter are a good place to start. We
also invite you to explore chaotic phenomenon in more detail in the following projects.

6.11 Projects

The first several projects are on various aspects of the logistic map. These projects do not exhaust
the possible investigations of the properties of the logistic map.

Project 6.16. A more accurate determination of δ and α

We have seen that it is difficult to determine δ accurately by finding the sequence of values of bk
at which the trajectory bifurcates for the kth time. A better way to determine δ is to compute
it from the sequence sm of superstable trajectories of period 2m−1. We already have found that
s1 = 1/2, s2 ≈ 0.80902, and s3 ≈ 0.87464. The parameters s1, s2, . . . can be computed directly
from the equation

f (2m−1)(x =
1

2
) =

1

2
. (6.29)

For example, s2 satisfies the relation f (2)(x = 1/2) = 1/2. This relation, together with the
analytical form for f (2)(x) given in (6.8), yields:

8r2(1− r)− 1 = 0. (6.30)

If we wish to solve (6.30) numerically for r = s2, we need to be careful not to find the irrelevant
solutions corresponding to a lower period. In this case we can factor out the solution r = 1/2 and
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m period sm
1 1 0.500 000 000
2 2 0.809 016 994
3 4 0.874 640 425
4 8 0.888 660 970
5 16 0.891 666 899
6 32 0.892 310 883
7 64 0.892 448 823
8 128 0.892 478 091

Table 6.2: Values of the control parameter sm for the superstable trajectories of period 2m−1. Nine
decimal places are shown.

solve the resultant quadratic equation analytically to find s2 = (1 +
√
5)/4. Clearly r = s1 = 1/2

solves (6.30) with period 1, because from (6.29), f (1)(x = 1/2) = 4r 1
2 (1 −

1
2 ) = r = 1/2 only for

r = 1/2.

1. It is straightforward to adapt the bisection method discussed in Section 6.6. Adapt the
class RecursiveFixedPointApp to find the numerical solutions of (6.29). Good starting
values for the left-most and right-most values of r are easy to obtain. The left-most value is
r = r∞ ≈ 0.8925. If we already know the sequence s1, s2, . . . , sm, then we can determine δ
by

δm =
sm−1 − sm−2

sm − sm−1
. (6.31)

We use this determination for δm to find the right-most value of r:

r
(m+1)
right =

sm − sm−1

δm
. (6.32)

We choose the desired precision to be 10−16. A summary of our results is given in Table 6.2.
Verify these results and determine δ.

2. Use your values of sm to obtain a more accurate determination of α and δ.

Project 6.17. From chaos to order

The bifurcation diagram of the logistic map (see Figure 6.2) has many interesting features that
we have not explored. For example, you might have noticed that there are several smooth dark
bands in the chaotic region for r > r∞. Use BifurcateApp to generate the bifurcation diagram for
r∞ ≤ r ≤ 1. If we start at r = 1.0 and decrease r, we see that there is a band that narrows and
eventually splits into two parts at r ≈ 0.9196. If you look closely, you will see that the band splits
into four parts at r ≈ 0.899. If you look even more closely, you will see many more bands. What
type of change occurs near the splitting (merging) of these bands)? Use IterateMap to look at
the time series of (6.5) for r = 0.9175. You will notice that although the trajectory looks random,
it oscillates back and forth between two bands. This behavior can be seen more clearly if you look
at the time series of xn+1 = f (2)(xn). A detailed discussion of the splitting of the bands can be
found in Peitgen et al.
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Project 6.18. Calculation of the Lyapunov spectrum

In Section 6.12 we discussed the calculation of the Lyapunov exponent for the logistic map. If a
dynamical system has a multidimensional phase space, for example, the Hénon map and the Lorenz
model, there is a set of Lyapunov exponents, called the Lyapunov spectrum, that characterize the
divergence of the trajectory. As an example, consider a set of initial conditions that forms a filled
sphere in phase space for the (three-dimensional) Lorenz model. If we iterate the Lorenz equations,
then the set of phase space points will deform into another shape. If the system has a fixed point,
this shape contracts to a single point. If the system is chaotic, then, typically, the sphere will
diverge in one direction, but become smaller in the other two directions. In this case we can define
three Lyapunov exponents to measure the deformation in three mutually perpendicular directions.
These three directions generally will not correspond to the axes of the original variables. Instead,
we must use a Gram-Schmidt orthogonalization procedure.

The algorithm for finding the Lyapunov spectrum is as follows:

(i) Linearize the dynamical equations. If r is the f -component vector containing the dynamical
variables, then define ∆r as the linearized difference vector. For example, the linearized
Lorenz equations are

d∆x

dt
= −σ∆x+ σ∆y (6.33a)

d∆y

dt
= −x∆z − z∆x+ r∆x−∆y (6.33b)

d∆z

dt
= x∆y + y∆x− b∆z. (6.33c)

(ii) Define f orthonormal initial values for ∆r. For example, ∆r1(0) = (1, 0, 0), ∆r2(0) = (0, 1, 0),
and ∆r3(0) = (0, 0, 1). Because these vectors appear in a linearized equation, they do not
have to be small in magnitude.

(iii) Iterate the original and linearized equations of motion. One iteration yields a new vector
from the original equation of motion and f new vectors ∆rα from the linearized equations.

(iv) Find the orthonormal vectors ∆r′α from the ∆rα using the Gram-Schmidt procedure. That
is,

∆r′1 =
∆r1
|∆r1|

(6.34a)

∆r′2 =
∆r2 − (∆r′1 ·∆r2)∆r′1
|∆r2 − (∆r′1 ·∆r2)∆r′1|

(6.34b)

∆r′3 =
∆r3 − (∆r′1 ·∆r3)∆r′1 − (∆r′2 ·∆r3)∆r′2∣∣∆r3 − (∆r′1 ·∆r3)∆r′1 − (∆r′2 ·∆r3)∆r′2

∣∣ . (6.34c)

It is straightforward to generalize the method to higher dimensional models.

(v) Set the ∆rα(t) equal to the orthonormal vectors ∆r′α(t).

(vi) Accumulate the running sum, Sα as Sα → Sα + log |∆rα(t)|.
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(vii) Repeat steps (iii)–(vi) and periodically output the approximate Lyapunov exponents λα =
(1/n)Sα, where n is the number of iterations.

To obtain a result for the Lyapunov spectrum that represent the steady state attractor, only include
data after the transient behavior has ended.

a. Compute the Lyapunov spectrum for the Lorenz model for σ = 16, b = 4, and r = 45.92. Try
other values of the parameters and compare your results.

b. Linearize the equations for the Hénon map and find the Lyapunov spectrum for a = 1.4 and
b = 0.3 in (??).

Project 6.19. A spinning magnet

Consider a compass needle that is free to rotate in a periodically reversing magnetic field which is
perpendicular to the axis of the needle. The equation of motion of the needle is given by

d2ϕ

dt2
= −µ

I
B0 cosωt sinϕ, (6.35)

where ϕ is the angle of the needle with respect to a fixed axis along the field, µ is the mag-
netic moment of the needle, I its moment of inertia, and B0 and ω are the amplitude and the
angular frequency of the magnetic field, respectively. Choose an appropriate numerical method
for solving (6.35), and plot the Poincaré map at time t = 2πn/ω. Verify that if the parame-
ter λ =

√
2B0µ/I/ω2 > 1, then the motion of the needle exhibits chaotic motion. Briggs (see

references) discusses how to construct the corresponding laboratory system and other nonlinear
physical systems.

r

(a)

L

L

r

(b)

Figure 6.10: (a) Geometry of the stadium billiard model. (b) Geometry of the Sinai billiard model.

Project 6.20. Billiard models

Consider a two-dimensional planar geometry in which a particle moves with constant velocity along
straight line orbits until it elastically reflects off the boundary. This straight line motion occurs in
various “billiard” systems. A simple example of such a system is a particle moving with fixed speed
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within a circle. For this geometry the angle between the particle’s momentum and the tangent to
the boundary at a reflection is the same for all points.

Suppose that we divide the circle into two equal parts and connect them by straight lines of
length L as shown in Figure 6.10a. This geometry is called a stadium billiard. How does the motion
of a particle in the stadium compare to the motion in the circle? In both cases we can find the
trajectory of the particle by geometrical considerations. The stadium billiard model and a similar
geometry known as the Sinai billiard model (see Figure 6.10b) have been used as model systems
for exploring the foundations of statistical mechanics. There also is much interest in relating the
behavior of a classical particle in various billiard models to the solution of Schrödinger’s equation
for the same geometries.

a. Write a program to simulate the stadium billiard model. Use the radius r of the semicircles as
the unit of length. The algorithm for determining the path of the particle is as follows:

(i) Begin with an initial position (x0, y0) and momentum (px0, py0) of the particle such that
|p0| = 1.

(ii) Determine which of the four sides the particle will hit. The possibilities are the top and
bottom line segments and the right and left semicircles.

(iii) Determine the next position of the particle from the intersection of the straight line defined
by the current position and momentum, and the equation for the segment where the next
reflection occurs.

(iv) Determine the new momentum, (p′x, p
′
y), of the particle after reflection such that the angle

of incidence equals the angle of reflection. For reflection off the line segments we have
(p′x, p

′
y) = (px,−py). For reflection off a circle we have

p′x =
[
y2 − (x− xc)

2
]
px − 2(x− xc)ypy (6.36a)

p′y = −2(x− xc)ypx +
[
(x− xc)

2 − y2
]
py, (6.36b)

where (xc, 0) is the center of the circle. (Note that the momentum px rather than p′x is on
the right-hand side of (6.36b). Remember that all lengths are scaled by the radius of the
circle.)

(v) Repeat steps (ii)–(iv).

b. Determine if the particle dynamics is chaotic by estimating the largest Lyapunov exponent. One
way to do so is to start two particles with almost identical positions and/or momenta (varying
by say 10−5). Compute the difference ∆s of the two phase space trajectories as a function of
the number of reflections n, where ∆s is defined by

∆s =
√
|r1 − r2|2 + |p1 − p2|2. (6.37)

Choose L = 1 and r = 1. The Lyapunov exponent can be found from a semilog plot of ∆s
versus n. Repeat your calculation for different initial conditions and average your values of ∆s
before plotting. Repeat the calculation for L = 0.5 and 2.0 and determine if your results depend
on L.
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c. Another test for the existence of chaos is the reversibility of the motion. Reverse the momentum
after the particle has made n reflections, and let the drawing color equal the background color
so that the path can be erased. What limitation does roundoff error place on your results?
Repeat this simulation for L = 1 and L = 0.

d. Place a small hole of diameter d in one of the circular sections of the stadium so that the
particle can escape. Choose L = 1 and set d = 0.02. Give the particle a random position and
momentum, and record the time when the particle escapes through the hole. Repeat for at
least 104 particles and compute the fraction of particles S(n) remaining after a given number
of reflections n. The function S(n) will decay with n. Determine the functional dependence of
S on n, and calculate the characteristic decay time if S(n) decays exponentially. Repeat for
L = 0.1, 0.5, and 2.0. Is the decay time a function of L? Does S(n) decays exponentially for
the circular billiard model (L = 0) (see Bauer and Bertsch)?

e. Choose an arbitrary initial position for the particle in a stadium with L = 1, and a small hole as
in part (d). Choose at least 5000 values of the initial value px0 uniformly distributed between
0 and 1. Choose py0 so that |p| = 1. Plot the escape time versus px0, and describe the visual
pattern of the trajectories. Then choose 5000 values of px0 in a smaller interval centered about
the value of px0 for which the escape time was greatest. Plot these values of the escape time
versus px0. Do you see any evidence of self-similarity?

f. Repeat steps (a)–(e) for the Sinai billiard geometry.

Project 6.21. The circle map and mode locking

The driven, damped pendulum can be approximated by a one-dimensional difference equation for
a range of amplitudes and frequencies of the driving force. This difference equation is known as
the circle map and is given by

θn+1 =
(
θn +Ω− K

2π
sin 2πθn

)
. (modulo 1) (6.38)

The variable θ represents an angle, and Ω represents a frequency ratio, the ratio of the natural
frequency of the pendulum to the frequency of the periodic driving force. The parameter K is
a measure of the strength of the nonlinear coupling of the pendulum to the external force. An
important quantity is the winding number which is defined as

W = lim
m→∞

1

m

m−1∑
n=0

∆θn, (6.39)

where ∆θn = Ω− (K/2π) sin 2πθn.

a. Consider the linear case, K = 0. Choose Ω = 0.4 and θ0 = 0.2 and determine W . Verify that
if Ω is a ratio of two integers, then W = Ω and the trajectory is periodic. What is the value
of W if Ω =

√
2/2, an irrational number? Verify that W = Ω and that the trajectory comes

arbitrarily close to any particular value of θ. Does θn ever return exactly to its initial value?
This type of behavior of the trajectory is termed quasiperiodic.
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b. For K > 0, we will find that W ̸= Ω and “locks” into rational frequency ratios for a range of
values of K and Ω. This type of behavior is called mode locking. For K < 1, the trajectory is
either periodic or quasiperiodic. Determine the value of W for K = 1/2 and values of Ω in the
range O < Ω ≤ 1. The widths in Ω of the various mode-locked regions where W is fixed increase
with K. Consider other values of K, and draw a diagram in the K-Ω plane (0 ≤ K,Ω ≤ 1)
so that those areas corresponding to frequency locking are shaded. These shaded regions are
called Arnold tongues.

c. For K = 1, all trajectories are frequency-locked periodic trajectories. Fix K at K = 1 and
determine the dependence of W on Ω. The plot of W versus Ω for K = 1 is called the Devil’s
staircase.

Project 6.22. Chaotic scattering

In Chapter 5 we discussed the classical scattering of particles off a fixed target, and found that
the differential cross section for a variety of interactions is a smoothly varying function of the
scattering angle. That is, a small change in the impact parameter b leads to a small change in the
scattering angle θ. Here we consider examples where a small change in b leads to large changes in
θ. Such a phenomenon is called chaotic scattering, because of the sensitivity to initial conditions
that is characteristic of chaos. The study of chaotic scattering is relevant to the design of electronic
nanostructures, because many experimental structures exhibit this type of scattering.

A typical scattering model consists of a target composed of a group of fixed hard disks and
a scatterer consisting of a point particle. The goal is to compute the path of the scatterer as it
bounces off the disks, and measure θ and the time of flight as a function of the impact parameter
b. If a particle bounces inside the target region before leaving, the time of flight can be very long.
There are even some trajectories for which the particle never leaves the target region.

Because it is difficult to monitor a trajectory that bounces back and forth between the hard
disks, we instead consider a two-dimensional map that contains the key features of chaotic scat-
tering (see Yalcinkaya and Lai for further discussion). The map is given by

xn+1 = a
[
xn − 1

4
(xn + yn)

2
]
, (6.40a)

yn+1 =
1

a

[
yn +

1

4
(xn + yn)

2
]
, (6.40b)

where a is a parameter. The target region is centered at the origin. In an actual scattering
experiment, the relation between (xn+1, yn+1) and (xn, yn) would be much more complicated, but
the map (6.40) captures most of the important features of realistic chaotic scattering experiments.
The iteration number n is analogous to the number of collisions of the scattered particle off the
disks. When xn or yn is significantly different from zero, the scatterer has left the target region.

a. Write a program to iterate the map (6.40). Let a = 8.0 and y0 = −0.3. Choose 104 initial values
of x0 uniformly distributed in the interval 0 < x0 < 0.1. Determine the time T (x0), the number
of iterations for which xn ≤ −5.0. After this time, xn rapidly moves to −∞. Plot T (x0) versus
x0. Then choose 104 initial values in a smaller interval centered about a value of x0 for which
T (x0) > 7. Plot these values of T (x0) versus x0. Do you see any evidence of self-similarity?
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b. A trajectory is said to be uncertain if a small change ϵ in x0 leads to a change in T (x0). We
expect that the number of uncertain trajectories, N , will depend on a power of ϵ, that is,
N ∼ ϵα. Determine N(ϵ) for ϵ = 10−p with p = 2 to 7 using the values of x0 in part (a). Then
determine the uncertainty dimension 1 − α from a log-log plot of N versus ϵ. Repeat these
measurements for other values of a. Does α depend on a?

c. Choose 4×104 initial conditions in the same interval as in part (a) and determine the number of
trajectories, S(n), that have not yet reached xn = −5 as a function of the number of iterations
n. Plot lnS(n) versus n and determine if the decay is exponential. It is possible to obtain
algebraic decay for values of a less than approximately 6.5.

d. Let a = 4.1 and choose 100 initial conditions uniformly distributed in the region 1.0 < x0 < 1.05
and 0.60 < y0 < 0.65. Are there any trajectories that are periodic and hence have infinite escape
times? Due to the accumulation of roundoff error, it is possible to find only finite, but very long
escape times. These periodic trajectories form closed curves, and the regions enclosed by them
are called KAM surfaces.

Project 6.23. Chemical reactions

In Project 4.20 we discussed how chemical oscillations can occur when the reactants are continu-
ously replenished. In this project we introduce a set of chemical reactions that exhibits the period
doubling route to chaos. Consider the following reactions (see Peng et al.):

P → A (6.41a)

P + C → A+ C (6.41b)

A → B (6.41c)

A+ 2B → 3B (6.41d)

B → C (6.41e)

C → D. (6.41f)

Each of the above reactions has an associated rate constant. The time dependence of the concen-
trations of A,B, and C is given by:

dA

dt
= k1P + k2PC − k3A− k4AB2 (6.42a)

dB

dt
= k3A+ k4AB

2 − k5B (6.42b)

dC

dt
= k4B − k5C. (6.42c)

We assume that P is held constant by replenishment from an external source. We also assume
the chemicals are well mixed so that there is no spatial dependence. In Section ?? we discuss the
effects of spatial inhomogeneities due to molecular diffusion. Equations (6.41) can be written in a
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dimensionless form as

dX

dτ
= c1 + c2Z −X −XY 2 (6.43a)

c3
dY

dτ
= X +XY 2 − Y (6.43b)

c4
dZ

dτ
= Y − Z, (6.43c)

where the ci are constants, τ = k3t, and X, Y , and Z are proportional to A, B, and C, respectively.

a. Write a program to solve the coupled differential equations in (6.43). Use a fourth-order Runge-
Kutta algorithm with an adaptive step size. Plot lnY versus the time τ .

b. Set c1 = 10, c3 = 0.005, and c4 = 0.02. The constant c2 is the control parameter. Consider
c2 = 0.10 to 0.16 in steps of 0.005. What is the period of lnY for each value of c2?

c. Determine the values of c2 at which the period doublings occur for as many period doublings
as you can determine. Compute the constant δ (see (6.10)) and compare its value to the value
of δ for the logistic map.

d. Make a bifurcation diagram by taking the values of lnY from the Poincaré plot at X = Z and
plotting them versus the control parameter c2. Do you see a sequence of period doublings?

e. Use three-dimensional graphics to plot the trajectory of (6.43) with lnX, lnY , and lnZ as the
three axes. Describe the attractors for some of the cases considered in part (a).

6.12 Simulations

The following models are implemented in EJS and are downloadable from the OSP Collection in
the ComPADRE digital library. Additional simulations will be written for missing sections.

Iteration

The Iteration model computes a table of iterates x0, x1, x2, x3, · · · using a map xn+1 = f(xn) that
computes a sequence of numbers starting with a seed x0 and a control parameter r and repeatedly
applying the map. The sequence of iterates is referred to as a trajectory or an orbit. See Section 6.2.

Logistic Bifurcation

The Bifurcation model shows the long-term iterates of the logistic map xn+1 = 4rxn(xn − 1) as
a function of the control parameter r. The model plots the iterated values xn after the initial
transient behavior is discarded. If the trajectory is close to an attractor, only those points that
lie on the attractor will appear on the plot. The Bifurcation model nicely shows the forking of
the possible periods of stable orbits from 1 to 2 to 4 to 8 etc. as r is increased. Each of these
bifurcation points is a period-doubling bifurcation. See Section 6.2.
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Logistic Cobweb

The Logistic Cobweb model shows the behavior of the logistic map by showing a cobweb plot, a
table of iterates, and a plot of iterates. The cobweb plot consists of a diagonal (x = y) line and a
curve representing y = 4rx(1 − x). Starting with an initial seed x0, the plot shows how visually
how the logistic map produces successive iterates. The cobweb spirals inward toward a stable fixed
point. Period doubling produces closed loops, and chaotic orbits show a filled area. See Section .

Logistic Lyapunov

The Logistic Lyapunov Exponent model plots the Lyapunov exponent to shows the rate of sepa-
ration of logistic map trajectories. See Section .

Two Ball Bounce

The Two Ball Bounce model shows a two-ball collision in a constant gravitational field that is
constrained to move in one dimension above a fixed floor. Except when a collision occurs, each
ball is a freely falling particle. The model also displays a Poincaré map using the velocity v1 and
height y1 of the upper ball m1 at the instant that the lower ball m2 hits the floor.

Appendix 6A: Stability of the Fixed Points of the Logistic
Map

In the following, we derive analytical expressions for the fixed points of the logistic map. The
fixed-point condition is given by

x∗ = f(x∗). (6.44)

From (6.5) this condition yields the two fixed points

x∗ = 0 and x∗ = 1− 1

4r
. (6.45)

Because x is restricted to be positive, the only fixed point for r < 1/4 is x = 0. To determine the
stability of x∗, we let

xn = x∗ + ϵn, (6.46a)

and

xn+1 = x∗ + ϵn+1. (6.46b)

Because |ϵn| ≪ 1, we have

xn+1 = f(x∗ + ϵn) ≈ f(x∗) + ϵnf
′(x∗) = x∗ + ϵnf

′(x∗). (6.47)

If we compare (6.46b) and (6.47), we obtain

ϵn+1/ϵn = f ′(x∗). (6.48)
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If |f ′(x∗)| > 1, the trajectory will diverge from x∗ because |ϵn+1| > |ϵn|. The opposite is
true for |f ′(x∗)| < 1. Hence, the local stability criteria for a fixed point x∗ are

1. |f ′(x∗)| < 1, x∗ is stable;

2. |f ′(x∗)| = 1, x∗ is marginally stable;

3. |f ′(x∗)| > 1, x∗ is unstable.

If x∗ is marginally stable, the second derivative f ′′(x) must be considered, and the trajectory
approaches x∗ with deviations from x∗ inversely proportional to the square root of the number of
iterations.

For the logistic map the derivatives at the fixed points are respectively

f ′(x = 0) =
d

dx
[4rx(1− x)]

∣∣∣∣
x=0

= 4r, (6.49)

and

f ′(x = x∗) =
d

dx
[4rx(1− x)]

∣∣∣∣
x=1−1/4r

= 2− 4r. (6.50)

It is straightforward to use (6.49) and (6.50) to find the range of r for which x∗ = 0 and x∗ = 1−1/4r
are stable.

If a trajectory has period two, then f (2)(x) = f(f(x)) has two fixed points. If you are
interested, you can solve for these fixed points analytically. As we found in Problem 6.3, these
two fixed points become unstable at the same value of r. We can derive this property of the fixed
points using the chain rule of differentiation:

d

dx
f (2)(x)

∣∣
x=x0

=
d

dx
f(f(x))

∣∣
x=x0

= f ′(f(x0))f
′(x)

∣∣
x=x0

. (6.51)

If we substitute x1 = f(x0), we can write

d

dx
f(f(x))

∣∣
x=x0

= f ′(x1)f
′(x0). (6.52)

In the same way, we can show that

d

dx
f (2)(x)

∣∣
x=x1

= f ′(x0)f
′(x1). (6.53)

We see that if x0 becomes unstable, then |f (2)′(x0)| > 1 as does |f (2)′(x1)|. Hence, x1 also is
unstable at the same value of r, and we conclude that both fixed points of f (2)(x) bifurcate at the
same value of r, leading to an trajectory of period 4.

From (6.50) we see that f ′(x = x∗) = 0 when r = 1/2 and x∗ = 1/2. Such a fixed point is said
to be superstable, because as we found in Problem 6.6, convergence to the fixed point is relatively
rapid. Superstable trajectories occur whenever one of the fixed points is at x∗ = 1/2.
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Appendix 6B: Finding the Roots of a Function

The roots of a function f(x) are the values of the variable x for which the function f(x) is zero.
Even an apparently simple equation such as

f(x) = tanx− x− c = 0. (6.54)

where c is a constant cannot be solved analytically for x.

Regardless of the function and the approach to root finding, the first step should be to learn as
much as possible about the function. For example, plotting the function will help us to determine
the approximate locations of the roots.

Newton’s (or the Newton-Raphson) method is based on replacing the function by the first
two terms of the Taylor expansion of f(x) about the root x. If our initial guess for the root is
x0, we can write f(x) ≈ f(x0) + (x − x0)f

′(x0). If we set f(x) equal to zero and solve for x, we
find x = x0 − f(x0)/f

′(x0). If we have made a good choice for x0, the resultant value of x should
be closer than x0 to the root. The general procedure is to calculate successive approximations as
follows:

xn+1 = xn − f(xn)

f ′(xn)
. (6.55)

If this series converges, it converges very quickly. However, if the initial guess is poor or if the
function has closely spaced multiple roots, the series may not converge. The successive iterations
of Newton’s method is an another example of a map. Newton’s method also works with complex
functions as we will see in the following problem.

Problem 6.24. Cube roots

Consider the function f(z) = z3 − 1, where z = x + iy, and f ′(z) = z2. Map the range of
convergence of (6.55) in the region [−2 < x < 2,−2 < y < 2] in the complex plane. Color the
starting z value red, green, or blue depending on the root to which the initial guess converges. If
the trajectory does not converge, color the starting point black. For more insight add a mouse
handler to your program so that if you click on your plot, the sequence of iterations starting from
the point where you clicked will be shown.

The following problem discusses a situation that typically arises in courses on quantum me-
chanics.

Problem 6.25. Energy levels in a finite square well

The quantum mechanical energy levels in the one-dimensional finite square well can be found by
solving the relation:

ϵ tan ϵ =
√

ρ2 − ϵ2, (6.56)

where ϵ =
√
mEa2/2~ and ρ =

√
mV0a2/2~ are defined in terms of the particle mass m, the

particle energy E, the width of the well a, and the depth of the well V0. The function ϵ tan ϵ has
zeros at ϵ = 0, π, 2π, . . . and asymptotes at ϵ = 0, π/2, 3π/2, 5π/2 . . .. The function

√
ρ− ϵ2 is a

quarter circle of radius ρ. Write a program to plot these two functions with ρ = 3 and then use
Newton’s method to determine the roots of (6.56). Find the value of ρ and thus V0, such that
below this value there is only one energy level and above this value there is more than one. At
what value of ρ do three energy levels first appear?
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In Section 6.6 we introduced the bisection root finding algorithm. This algorithm is imple-
mented in the Root class in the numerics package. It can be used with any function.

Listing 6.2: The bisection method defined in the Root class in the numerics package.

public stat ic double b i s e c t i o n ( f ina l Function f , double x1 , double x2 , f ina l double t o l ) {
int count = 0 ;
int maxCount = ( int ) (Math . l og (Math . abs ( x2 − x1 ) / t o l ) / Math . l og ( 2 ) ) ;
maxCount = Math .max(MAX ITERATIONS, maxCount) + 2 ;
double y1 = f . eva luate ( x1 ) , y2 = f . eva luate ( x2 ) ;
i f ( y1 * y2 > 0) { // y1 and y2 must have oppo s i t e s i gn

return Double .NaN; // i n t e r v a l does not conta in a roo t
}
while ( count < maxCount ) {

double x = ( x1 + x2 ) / 2 ;
double y = f . eva luate ( x ) ;
i f (Math . abs ( y ) < t o l ) return x ;
i f ( y * y1 > 0) { // r ep l a c e the end−po in t t h a t has the same s i gn

x1 = x ;
y1 = y ;

}
else {

x2 = x ;
y2 = y ;

}
count++;

}
return Double .NaN; // did not converge in max i t e r a t i o n s

}

The bisection algorithm is guaranteed to converge if you can find an interval where the function
changes sign. However, it is slow. Newton’s algorithm is very fast, but may not converge. We
develop an algorithm in the following problem that combines these two approaches.

Problem 6.26. Finding roots

Modify Newton’s algorithm to keep track of the interval between the minimum and the maximum
of x while iterating (6.55). If the iterate xn+1 jumps outside this interval, interrupt Newton’s
method and use the bisection algorithm for one iteration. Test the root at the end of the iterative
process to check that the algorithm actually found a root. Test your algorithm on the function in
(6.54).

References and Suggestions for Further Reading

Books

Ralph H. Abraham and Christopher D. Shaw, Dynamics – The Geometry of Behavior, second
edition, Addison-Wesley (1992). The authors use an abundance of visual representations.



CHAPTER 6. THE CHAOTIC MOTION OF DYNAMICAL SYSTEMS 185

Hao Bai-Lin, Chaos II, World Scientific (1990). A collection of reprints on chaotic phenomena.
The following papers were cited in the text. James P. Crutchfield, J. Doyne Farmer, Norman
H. Packhard, and Robert S. Shaw, “Chaos,” Sci. Am. 255 (6), 46–57 (1986); Mitchell J.
Feigenbaum, “Quantitative universality for a class of nonlinear transformations,” J. Stat.
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