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We apply Newton’s laws of motion to planetary motion and other systems of a few particles and
explore some of the counter-intuitive consequences of Newton’s laws.

5.1 Planetary Motion

Planetary motion is of special significance because it played an important role in the conceptual
history of the mechanical view of the universe. Few theories have affected Western civilization as
much as Newton’s laws of motion and the law of gravitation, which together relate the motion of
the heavens to the motion of terrestrial bodies.

Much of our knowledge of planetary motion is summarized by Kepler’s three laws, which can
be stated as:

1. Each planet moves in an elliptical orbit with the Sun located at one of the foci of the ellipse.

2. The speed of a planet increases as its distance from the Sun decreases such that the line from
the Sun to the planet sweeps out equal areas in equal times.

3. The ratio T 2/a3 is the same for all planets that orbit the Sun, where T is the period of the
planet and a is the semimajor axis of the ellipse.
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Kepler obtained these laws by a careful analysis of the observational data collected over many
years by Tycho Brahe.

Kepler’s first and third laws describe the shape of the orbit rather than the time dependence
of the position and velocity of a planet. Because it is not possible to obtain this time dependence
in terms of elementary functions, we will obtain the numerical solution of the equations of motion
of planets and satellites in orbit. In addition, we will consider the effects of perturbing forces on
the orbit and problems that challenge our intuitive understanding of Newton’s laws of motion.

5.2 The Equations of Motion

The motion of the Sun and Earth is an example of a two-body problem. We can reduce this
problem to a one-body problem in one of two ways. The easiest way is to use the fact that the
mass of the Sun is much greater than the mass of the Earth. Hence we can assume that, to a good
approximation, the Sun is stationary and is a convenient choice of the origin of our coordinate
system.

If you are familiar with the concept of a reduced mass, you know that the reduction to a
one-body problem is more general. That is, the motion of two objects of mass m and M whose
total potential energy is a function only of their relative separation can be reduced to an equivalent
one-body problem for the motion of an object of reduced mass µ given by

µ =
Mm

m+M
. (5.1)

Because the mass of the Earth, m = 5.99 × 1024 kg is so much smaller than the mass of the Sun,
M = 1.99×1030 kg, we find that for most practical purposes, the reduced mass of the Sun and the
Earth is that of the Earth alone. In the following, we consider the problem of a single particle of
mass m moving about a fixed center of force, which we take as the origin of the coordinate system.

Newton’s universal law of gravitation states that a particle of mass M attracts another particle
of mass m with a force given by

F = −GMm

r2
r̂ = −GMm

r3
r, (5.2)

where the vector r is directed from M to m (see Figure 5.1). The negative sign in (5.2) implies that
the gravitational force is attractive, that is, it tends to decrease the separation r. The gravitational
constant G is determined experimentally to be

G = 6.67× 10−11 m3

kg · s2
. (5.3)

The force law (5.2) applies to the motion of the center of mass for objects of negligible spatial
extent. Newton delayed publication of his law of gravitation for twenty years while he invented
integral calculus and showed that (5.2) also applies to any uniform sphere or spherical shell of
matter if the distance r is measured from the center of each mass.

The gravitational force has two general properties: its magnitude depends only on the separa-
tion of the particles, and its direction is along the line joining the particles. Such a force is called
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Figure 5.1: An object of mass m moves under the influence of a central force F . Note that
cos θ = x/r and sin θ = y/r, which provide useful relations for writing the equations of motion in
component form suitable for numerical solutions.

a central force. The assumption of a central force implies that the orbit of the Earth is restricted
to a plane (x-y), and the angular momentum L is conserved and lies in the third (z) direction. We
write Lz in the form

Lz = (r×mv)z = m(xvy − yvx), (5.4)

where we have used the cross-product definition L = r× p and p = mv. An additional constraint
on the motion is that the total energy E is conserved and is given by

E =
1

2
mv2 − GMm

r
. (5.5)

If we fix the coordinate system at the mass M , the equation of motion of the particle of mass
m is

m
d2r

dt2
= −GMm

r3
r. (5.6)

It is convenient to write the force in Cartesian coordinates (see Figure 5.1):

Fx = −GMm

r2
cos θ = −GMm

r3
x (5.7a)

Fy = −GMm

r2
sin θ = −GMm

r3
y. (5.7b)

Hence, the equations of motion in Cartesian coordinates are

d2x

dt2
= −GM

r3
x (5.8a)

d2y

dt2
= −GM

r3
y, (5.8b)

where r2 = x2 + y2. Equations (5.8a) and (5.8b) are examples of coupled differential equations
because each equation contains both x and y.
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5.3 Circular and Elliptical Orbits

Because many planetary orbits are nearly circular, it is useful to obtain the condition for a circular
orbit. The magnitude of the acceleration a is related to the radius r of the circular orbit by

a =
v2

r
, (5.9)

where v is the speed of the object. The acceleration always is directed toward the center and is
due to the gravitational force. Hence we have

mv2

r
=

GMm

r2
, (5.10)

and

v =
(GM

r

)1/2
. (5.11)

The relation (5.11) between the radius and the speed is the general condition for a circular orbit.

We also can find the dependence of the period T on the radius of a circular orbit using the
relation,

T =
2πr

v
, (5.12)

in combination with (5.11) to obtain

T 2 =
4π2

GM
r3. (5.13)

The relation (5.13) is a special case of Kepler’s third law with the radius r corresponding to the
semimajor axis of an ellipse.

A simple geometrical characterization of an elliptical orbit is shown in Figure 5.2. The two
foci of an ellipse, F1 and F2, have the property that for any point P , the distance F1P + F2P is
a constant. In general, an ellipse has two perpendicular axes of unequal length. The longer axis
is the major axis; half of this axis is the semimajor axis a. The shorter axis is the minor axis; the
semiminor axis b is half of this distance. It is common to specify an elliptical orbit by a and by
the eccentricity e, where e is the ratio of the distance between the foci to the length of the major
axis. Because F1P + F2P = 2a, it is easy to show that

e =

√
1− b2

a2
(5.14)

with 0 < e < 1. (Choose the point P at x = 0, y = b.) A special case is b = a for which the ellipse
reduces to a circle and e = 0.

5.4 Astronomical Units

It is convenient to choose a system of units in which the magnitude of the product GM is not too
large and not too small. To describe the Earth’s orbit, the convention is to choose the length of
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Figure 5.2: The characterization of an ellipse in terms of the semimajor axis a and the eccentricity
e. The semiminor axis b is the distance OB. The origin O in Cartesian coordinates is at the center
of the ellipse.

the Earth’s semimajor axis as the unit of length. This unit of length is called the astronomical
unit (AU) and is

1AU = 1.496× 1011 m. (5.15)

The unit of time is assumed to be one year or 3.15× 107 s. In these units, the period of the Earth
is T = 1years and its semimajor axis is a = 1AU. Hence from (5.13)

GM =
4π2a3

T 2
= 4π2AU3/years2. (astronomical units) (5.16)

As an example of the use of astronomical units, a program distance of 1.5 would correspond to
1.5× (1.496× 1011) = 2.244× 1011 m.

5.5 Log-log and Semilog Plots

The values of T and a for our solar system are given in Table 5.1. We first analyze these values
and determine if T and a satisfy a simple mathematical relationship.

Suppose we wish to determine whether two variables y and x satisfy a functional relationship,
y = f(x). To simplify the analysis, we ignore possible errors in the measurements of y and x. The
simplest relation between y and x is linear, that is, y = mx+b. The existence of such a relation can
be seen by plotting y versus x and finding if the plot is linear. From Table 5.1 we see that T is not
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a linear function of a. For example, an increase in T from 0.24 to 1, an increase of approximately
4, yields an increase in T of approximately 2.5.

For many problems, it is reasonable to assume an exponential relation

y = C erx, (5.17)

or a power law relation
y = C xn, (5.18)

where C, r, and n are unknown parameters.

If we assume the exponential form (5.17), we can take the natural logarithm of both sides to
find

ln y = lnC + rx. (5.19)

Hence if (5.17) is applicable, a plot of ln y versus x would yield a straight line with slope r and
intercept lnC.

The natural logarithm of both sides of the power law relation (5.18) yields

ln y = lnC + n lnx. (5.20)

If (5.18) applies, a plot of ln y versus lnx yields the exponent n (the slope), which is the usual
quantity of physical interest if a power law dependence holds.

planet T (Earth years) a (AU)
Mercury 0.241 0.387
Venus 0.615 0.723
Earth 1.0 1.0
Mars 1.88 1.523
Jupiter 11.86 5.202
Saturn 29.5 9.539
Uranus 84.0 19.18
Neptune 165 30.06
Pluto 248 39.44

Table 5.1: The period T and semimajor axis a of the planets. The unit of length is the astronomical
unit (AU). The unit of time is one (Earth) year.

We illustrate a simple analysis of the data in Table 5.1. Because we expect that the relation
between T and a has the power law form T = Can, we plot lnT versus ln a (see Figure 5.3). A
visual inspection of the plot indicates that a linear relationship between lnT and ln a is reasonable
and that the slope is approximately 1.50 in agreement with Kepler’s second law. In Chapter ??,
we will discuss the least squares method for fitting a straight line through a number of data points.
With a little practice you can do a visual analysis that is nearly as good.

The Plotting Panel element contains the axes needed to produce linear, log-log, and semi-log
plots. The Kepler Data Plot model shows the log-log plot of the semi-major axis of the planets
versus the orbital period. The arrays, a and T, contain the semimajor axis of the planets and
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Figure 5.3: Plot of lnT versus ln a using the data in Table 5.1. Verify that the slope is 1.50.

their periods, respectively. Setting the log scale properties in the inspector transforms the data
as it is being plotted and causes the axis to change how labels are rendered. Note that the plot
automatically adjusts itself to fit the data because the autoscale option is true by default. Also
the grid and the tick-labels change as the window is resized.

x y1(x) y2(x) y3(x)
0 0.00 0.00 2.00

0.5 0.75 1.59 5.44
1.0 3.00 2.00 14.78
1.5 6.75 2.29 40.17
2.0 12.00 2.52 109.20
2.5 18.75 2.71 296.83

Table 5.2: Determine the functional forms of y(x) for the three sets of data. There are no mea-
surement errors, but there are roundoff errors.

Exercise 5.1. Simple functional forms

a. Load the Kepler Data Plot model and study the syntax for creating the log-log plot. The X-
Axis Type property in the plotting panel inspector uses the Java ternary ? operator and integer
constants to determine the type of axis. If the expression in the property field produces zero a
linear scale is used. A one produces a logarithmic scale.

b. Use the Data Tool to analyze the astronomical data in Table 5.1. Fit the data to a power
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law. Create columns of log a and log T using the tool’s Data Builder button and show that the
constants obtained from a linear least square fit agree with Kepler’s law.

c. The Kepler Data Plot model reads data from a text file into an EJS model. Modify the model
so that the three sets of data shown in Table 5.2 are read from text files and plotted. Generate
linear, semi-log, and log-log plots to determine the functional form of y(x) that best fits each
data set.

The Kepler Data Plot model introduces new Java syntax in the the readKeplerData custom
method. Astronomical data is stored in a text file and this data must be processed before it can be
used. The process begins by reading the file and putting each line into an array of strings. A group
of characters (a token) separated by whitespace is assumed to be a number and we attempt (try) to
convert these character groups into double precision floating numbers. The parseDouble method
does this conversion but throws an error Exception if the character sequence is not recognizable.
If the conversion fails we handle (catch) the error and continue processing the next line of data.

public void readKeplerData ( ) {
St r ing f i l ename="./KeplerDataPlot/orbit_data.txt" ; // f i l e l o c a t i o n
// Resource Loader reads f i l e s from a d i r e c t o r y or from wi th in a j a r
St r ing contents =

org . opensourcephys i c s . t o o l s . ResourceLoader . g e tS t r i ng ( f i l ename ) ;
S t r ing [ ] l i n e s = contents . tr im ( ) . s p l i t ( "\n" ) ; // s p l i t f i l e i n t o l i n e s
for ( int i =0, counter=0; i< l i n e s . l ength ; i++) { // e x t r a c t numbers

St r ing [ ] tokens = l i n e s [ i ] . tr im ( ) . s p l i t ( "\\s+" ) ; // ”whi te space ” s p l i t
try { // t r y to conver t groups o f cha rac t e r s to doub l e

T[ counter ]= Double . parseDouble ( tokens [ 0 ] ) ;
a [ counter ]= Double . parseDouble ( tokens [ 1 ] ) ;

} catch ( Exception e ) {
continue ; // go to next lune i f an excep t i on occurs

}
counter++; // count the number o f s u c c e s s f u l conver s ions

}
}

5.6 Simulation of the Orbit

We now investigate the Newtonian Orbit model which simulates orbital motion, such as the Earth’s
orbit about the Sun. The model solves the equations of motion (5.8) for the x and y position and
velocity variables using a predefined in ODE solver. The calculation of the acceleration components
dvx/dt and dvy/dt is performed in the ODE preliminary code page and units are chosen such that
Gm = 1 where m is the mass of the Sun. The initial position on the x-axis and the initial speed
in the y-direction v0 are editable using input fields. The simulation shows the planet’s current
position and its trajectory.

Problem 5.2. Verification of Newtonian Orbit model for circular orbits

a. Verify the Planet model by considering the special case of a circular orbit. For example, choose
(in astronomical units) x(t = 0) = 1, y(t = 0) = 0, and vx(t = 0) = 0. Use the relation (5.11)
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to find the value of vy(t = 0) that yields a circular orbit. How small a value of ∆t is needed so
that a circular orbit is repeated over many periods? Your answer will depend on your choice of
differential equation solver. Find the largest value of ∆t that yields an orbit that repeats for
many revolutions using the Euler, Euler-Cromer, and RK4 algorithms. Is it possible to choose
a smaller value of ∆t, or are some algorithms, such as the Euler method, simply not stable for
this dynamical system?

b. Write a fixed relation to compute the total energy (see (5.5)) and plot it as the system evolves.
(It is sufficient to calculate the energy per unit mass, E/m.) For a given value of ∆t, which
algorithm conserves the total energy best? Is it possible to choose a value of ∆t that conserves
the energy exactly? What is the significance of the negative sign for the total energy?

c. Create an ODE Event when the planet crosses the x-axis to determine the numerical value of
the period. (See Problem 3.10c for an example that uses ODE events.) Choose different sets
of values of x(t = 0) and vy(t = 0), consistent with the condition for a circular orbit. For each
orbit, determine the radius and the period and verify Kepler’s third law for both circular and
non-circular orbits.

Problem 5.3. Verification of Kepler’s second and third law

a. Set y(t = 0) = 0 and vx(t = 0) = 0 and find by trial and error several values of x(t = 0) and
vy(t = 0) that yield elliptical orbits of a convenient size. Choose a suitable algorithm and plot
the speed of the planet as the orbit evolves. Where is the speed a maximum (minimum)?

b. Use the same initial conditions as in part (a) and compute the total energy, angular momentum,
semimajor and semiminor axes, eccentricity, and period for each orbit. Plot your data for the
dependence of the period T on the semimajor axis a and verify Kepler’s third law. Given the
ratio of T 2/a3 that you found, determine the numerical value of this ratio in SI units for our
solar system.

c. The force center is at (x, y) = (0, 0) and is one focus. Find the second focus by symmetry.
Compute the sum of the distances from each point on the orbit to the two foci and verify that
the orbit is an ellipse.

d. According to Kepler’s second law, the orbiting object sweeps out equal areas in equal times. If
we use an algorithm with a fixed time step ∆t, it is sufficient to compute the area of the triangle
swept in each time step. This area equals one-half the base of the triangle times its height, or
1
2∆t (r × v) = 1

2∆t(xvy − yvx). Is this area a constant? This constant corresponds to what
physical quantity?

The Advanced button near the bottom of the ODE editor page allows us to control ODE
solver parameters such as the number of number of time-step adjustments that will be attempted
to reach the requested tolerance.

Problem 5.4. ODE Errors
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a. Show that algorithms with a fixed value of ∆t break down if the “planet” is too close to the
sun. How does EJS report ODE errors when the program is running? What is the cause of the
failure of the method? What advantage might there be to using a variable time step? What
are the possible disadvantages? (See Project 5.20 for an example where a variable time step is
very useful.)

c.∗ Start the planet with zero radial velocity so that it falls directly into the Sun. Use the advanced
”Code for solver error” input area to pause the simulation and to report the time the planet
reached the singularity.

Problem 5.5. Non-inverse square forces

a. Consider the dynamical effects of a small change in the attractive inverse-square force law, for
example, let the magnitude of the force equal Cm/r2+δ, where δ << 1. For simplicity, take
the numerical value of the constant C to be 4π2 as before. Consider the initial conditions
x(t = 0) = 1, y(t = 0) = 0, vx(t = 0) = 0, and vy(t = 0) = 5. Choose δ = 0.05 and determine
the nature of the orbit. Does the orbit of the planet retrace itself? Verify that your result is
not due to your choice of ∆t. Does the planet spiral away from or toward the sun? The path
of the planet can be described as an elliptical orbit that slowly rotates or precesses in the same
sense as the motion of the planet. A convenient measure of the precession is the angle between
successive orientations of the semimajor axis of the ellipse. This angle is the rate of precession
per revolution. Estimate the magnitude of this angle for your choice of δ. What is the effect of
decreasing the semimajor axis for fixed δ? What is the effect of changing δ for fixed semimajor
axis?

b. Einstein’s theory of gravitation (the general theory of relativity) predicts a correction to the
force on a planet that varies as 1/r4 due to a weak gravitational field. The result is that the
equation of motion for the trajectory of a particle can be written as

d2r

dt2
= −GM

r2

[
1 + α

(GM

c2
)2 1

r2

]
r̂, (5.21)

where the parameter α is dimensionless. Take GM = 4π2 and assume α = 10−3. Determine
the nature of the orbit for this potential. (For our solar system the constant α is a maximum
for the planet Mercury, but is much smaller than 10−3.)

c. Suppose that the attractive gravitational force law depends on the inverse-cube of the distance,
Cm/r3. What are the units of C? For simplicity, take the numerical value of C to be 4π2.
Consider the initial condition x(t = 0) = 1, y(t = 0) = 0, vx(t = 0) = 0, and determine
analytically the value of vy(t = 0) required for a circular orbit. How small a value of ∆t is
needed so that the simulation yields a circular orbit over several periods? How does this value
of ∆t compare with the value needed for the inverse-square force law?

d. Vary vy(t = 0) by approximately 2% from the circular orbit condition that you determined in
part (c). What is the nature of the new orbit? What is the sign of the total energy? Is the
orbit bound? Is it closed? Are all bound orbits closed?
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(a) (b)

Figure 5.4: (a) An impulse applied in the tangential direction. (b) An impulse applied in the radial
direction.

Problem 5.6. Effect of drag resistance on a satellite orbit

Consider a satellite in orbit about the Earth. In this case it is convenient to measure distances in
terms of the radius of the Earth, R = 6.37 × 106 m, and the time in terms of hours. Because the
force on the satellite is proportional to Gm, where m = 5.99× 1024 kg is the mass of the Earth, we
need to evaluate the product Gm in Earth units (EU). In these units the value of Gm is given by

Gm = 6.67× 10−11 m3

kg · s2
( 1EU

6.37× 106 m

)3 (
3.6× 103 s/h

)2(
5.99× 1024 kg

)
= 20.0EU3/h2. (Earth units) (5.22)

Modify the Newtonian Orbit model to incorporate the effects of drag resistance on the motion of
an orbiting Earth satellite. Assume that the drag force is proportional to the square of the speed
of the satellite. To be able to observe the effects of air resistance in a reasonable time, take the
magnitude of the drag force to be approximately one-tenth of the magnitude of the gravitational
force. Choose initial conditions such that a circular orbit would be obtained in the absence of drag
resistance and allow at least one revolution before “switching on” the drag resistance. Describe the
qualitative change of the orbit due to drag resistance. How does the total energy and the speed of
the satellite change with time?

5.7 Impulsive Forces

What happens to the orbit of an Earth satellite when it is hit by space debris? We now discuss
the modifications we need to make inn the Planet model so that we can apply an impulsive force
(a kick) by a mouse click. If we apply a vertical kick when the position of the satellite is as shown
in Figure 5.4a, the impulse would be tangential to the orbit. A radial kick can be applied when
the satellite is as shown in Figure 5.4b.

User actions, such as mouse clicks or keyboard entries, are passed from the operating system
to Java programs, such as EJS simulations, as events or actions. Although this standard Java
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framework is straightforward, we have simplified it to respond to mouse actions within the drawing
panels.

We now challenge your intuitive understanding of Newton’s laws of motion by considering
several perturbations of the motion of an orbiting object. Modify your Planet model to simulate
the effects of the perturbations in Problem 5.7. In each case answer the questions before doing the
simulation.

Problem 5.7. Tangential and radial perturbations

a. Suppose that a small tangential “kick” or impulsive force is applied to a satellite in a circular
orbit about the Earth (see Figure 5.4a.) Choose Earth units so that the numerical value of
the product Gm is given by (5.22). Apply the impulsive force by stopping the program after
the satellite has made several revolutions and click the mouse to apply the force. Recall that
the impulse changes the momentum in the desired direction directly. In what direction does
the orbit change? Is the orbit stable, for example, does a small impulse lead to a small change
in the orbit? Does the orbit retrace itself indefinitely if no further perturbations are applied?
Describe the shape of the perturbed orbit.

b. How does the change in the orbit depend on the strength of the kick and its duration?

c. Determine if the angular momentum and the total energy are changed by the perturbation.

d. Apply a radial kick to the satellite as in Figure 5.4b and answer the same questions as in parts
(a)–(c).

e. Determine the stability of the inverse-cube force law (see Problem 5.5) to radial and tangential
perturbations.

Mouse actions are not the only possible way to affect the simulation. We also can add buttons
with actions to produce radial and tangential kicks.

5.8 Velocity Space

In Problem 5.7 your intuition might have been incorrect. For example, you might have thought
that the orbit would elongate in the direction of the kick. In fact the orbit does elongate, but in a
direction perpendicular to the kick. Do not worry, you are in good company! Few students have
a good qualitative understanding of Newton’s law of motion, even after taking an introductory
course in physics. A qualitative way of stating Newton’s second law is

Forces act on the trajectories of particles by changing velocity not position.

If we fail to take into account this property of Newton’s second law, we will encounter physical
situations that appear counterintuitive.

Because force acts to change velocity, it is reasonable to consider both velocity and position
on an equal basis. In fact position and momentum are treated in such a manner in advanced
formulations of classical mechanics and in quantum mechanics.
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In Problem 5.8 we explore some of the properties of orbits in velocity space in the context of
the bound motion of a particle in an inverse-square force. Modify your program so that the path
in velocity space of the Earth is plotted. That is, plot the point (vx, vy) the same way you plotted
the point (x, y). The path in velocity space is a series of successive values of the object’s velocity
vector. If the position space orbit is an ellipse, what is the shape of the orbit in velocity space?

Problem 5.8. Properties of velocity space orbits

a. Modify your program to display the orbit in position space and in velocity space at the same
time. Verify that the velocity space orbit is a circle, even if the orbit in position space is an
ellipse. Does the center of this circle coincide with the origin (vx, vy) = (0, 0) in velocity space?
Choose the same initial conditions that you considered in Problems 5.2 and 5.3.

b.∗ Let u denote the radius vector of a point on the velocity circle, and w denote the vector from
the origin in velocity space to the center of the velocity circle (see Figure 5.5). Then the
velocity of the particle can be written as

v = u+w. (5.23)

Compute u and verify that its magnitude is given by

u = GMm/L, (5.24)

where L is the magnitude of the angular momentum. Note that L is proportional to m so that
it is not necessary to know the magnitude of m.

c.∗ Verify that at each moment in time, the planet’s position vector r is perpendicular to u.
Explain why this relation holds.

Problem 5.9. Effect of impulses in velocity space

How does the velocity space orbit change when an impulsive kick is applied in the tangential or
in the radial direction? How does the magnitude and direction of w change? From the observed
change in the velocity orbit and the above considerations, explain the observed change of the orbit
in position space.

5.9 A Mini-Solar System

So far our study of planetary orbits has been restricted to two-body central forces. However, the
solar system is not a two-body system, because the planets exert gravitational forces on one another.
Although the interplanetary forces are small in magnitude in comparison to the gravitational force
of the Sun, they can produce measurable effects. For example, the existence of Neptune was
conjectured on the basis of a discrepancy between the experimentally measured orbit of Uranus
and the predicted orbit calculated from the known forces.

The presence of other planets implies that the total force on a given planet is not a central force.
Furthermore, because the orbits of the planets are not exactly in the same plane, an analysis of the
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Figure 5.5: The orbit of a particle in velocity space. The vector w points from the origin in velocity
space to the center of the circular orbit. The vector u points from the center of the orbit to the
point (vx, vy).

solar system must be extended to three dimensions if accurate calculations are required. However
for simplicity, we will consider a model of a two-dimensional solar system with two planets in orbit
about a fixed sun.

The equations of motion of two planets of mass m1 and mass m2 can be written in vector
form as (see Figure 5.6)

m1
d2r1
dt2

= −GMm1

r13
r1 +

Gm1m2

r213
r21 (5.25a)

m2
d2r2
dt2

= −GMm2

r23
r2 −

Gm1m2

r213
r21, (5.25b)

where r1 and r2 are directed from the sun to planets 1 and 2 respectively, and r21 = r2 − r1 is the
vector from planet 1 to planet 2. It is convenient to divide (5.25a) by m1 and (5.25b) by m2 and
to write the equations of motion as

d2r1
dt2

= −GM

r13
r1 +

Gm2

r213
r21 (5.26a)

d2r2
dt2

= −GM

r23
r2 −

Gm1

r213
r21. (5.26b)

A numerical solution of (5.26) can be obtained by the straightforward extension of the New-
tonian Planet model and is implemented in the Two Planet model in the ch0?? package. Examine
this new model and compare it with the Newtonian Orbit model. This new model has twice as
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Figure 5.6: The coordinate system used in (5.25). Planets of mass m1 and m2 orbit a sun of mass
M .

many dynamical variables and twice as many differential equations. The preliminary code of the
ODE editor page computes the acceleration of each planet using the attraction to the central core
as well as their mutual attraction as shown in the listing.

double r1Squared = x1*x1+y1*y1 ; // r1 squared
double r1Cubed = r1Squared*Math . s q r t ( r1Squared ) ; // r1 cubed
double r2Squared = x2*x2+y2*y2 ; // r2 squared
double r2Cubed = r2Squared*Math . s q r t ( r2Squared ) ; // r2 cubed
double dx = x2−x1 ; // x12 separa t i on
double dy = y2−y1 ; // y12 separa t i on
double dr2 = dx*dx+dy*dy ; // r12 squared
double dr3 = Math . s q r t ( dr2 )* dr2 ; // r12 cubed
double ax1 = ((−GM*x1 )/ r1Cubed )+((GM1*dx )/ dr3 ) ; // vx1 ra t e
double ay1 = ((−GM*y1 )/ r1Cubed )+((GM1*dy )/ dr3 ) ; // vy1 ra t e
double ax2 = ((−GM*x2 )/ r2Cubed)−((GM2*dx )/ dr3 ) ; // vx2 ra t e
double ay2 = ((−GM*y2 )/ r2Cubed)−((GM2*dy )/ dr3 ) ; // vy2 ra t e

Problem 5.10. Planetary perturbations

Run the Two Planet model with the initial conditions given in the program. For illustrative
purposes, we have adopted the numerical values m1/M = 10−3 and m2/M = 4× 10−2 and hence
GM1 = (m2/M)GM = 0.04GM and GM2 = (m1/M)GM = 0.001GM. What would be the shape
of the orbits and the periods of the two planets if they did not mutually interact? What is the
qualitative effect of their mutual interaction? Describe the shape of the two orbits. Why is one
planet affected more by their mutual interaction than the other? Is the angular momentum and
the total energy of planet one conserved? Is the total energy and total angular momentum of the
two planets conserved? A related, but more time consuming problem is given in Project 5.19.

Problem 5.11. Double stars

Another interesting dynamical system consists of one planet orbiting about two fixed stars of equal
mass. In this case there are no closed orbits, but the orbits can be classified as either stable or
unstable. Stable orbits may be open loops that encircle both stars, figure eights, or orbits that
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Figure 5.7: The coordinate system used to define the differential scattering cross section. Particles
passing through the beam area 2πb db are scattered into the solid angle dΩ.

encircle only one star. Unstable orbits will eventually collide with one of the stars. Modify Two
Planet model to simulate the double star system, with the first star located at (−1, 0) and the
second star of equal mass located at (1, 0). Place the planet at (0.1, 1) and systematically vary
the x and y components of the velocity to obtain different types of orbits. Then try other initial
positions.

5.10 Two-Body Scattering

Much of our understanding of the structure of matter comes from scattering experiments. In this
section we explore one of the more difficult concepts in the theory of scattering, the differential
cross section.

A typical scattering experiment involves a beam with many incident particles all with the
same kinetic energy. The coordinate system is shown in Figure 5.7. The incident particles come
from the left with an initial velocity v in the +x direction. We take the center of the beam and
the center of the target to be on the x axis. The impact parameter b is the perpendicular distance
from the initial trajectory to a parallel line through the center of the target (see Figure 5.7). We
assume that the width of the beam is larger than the size of the target. The target contains many
scattering centers, but for calculational purposes we may consider scattering off only one particle
if the target is sufficiently thin.

When an incident particle comes close to the target, it is deflected. In a typical experiment,
the scattered particles are counted in a detector that is far from the target. The final velocity of
the scattered particles is v′, and the angle between v and v′ is the scattering angle θ.

Let us assume that the scattering is elastic and that the target is much more massive than
the beam particles so that the target can be considered to be fixed. (The latter condition can be
relaxed by using center of mass coordinates.) We also assume that no incident particle is scattered
more than once. These considerations imply that the initial speed and final speed of the incident
particles are equal. The functional dependence of θ on b depends on the force on the beam particles
due to the target. In a typical experiment the number of particles in an angular region between
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θ and θ + dθ is detected for many values of θ. These detectors measure the number of particles
scattered into the solid angle dΩ = sin θdθdϕ centered about θ. The differential cross section σ(θ)
is defined by the relation

dN

N
= nσ(θ)dΩ, (5.27)

where dN is the number of particles scattered into the solid angle dΩ centered about θ and the
azimuthal angle ϕ, N is the total number of particles in the beam, and n is the target density
defined as the number of targets per unit area.

The interpretation of (5.27) is that the fraction of particles scattered into the solid angle dΩ is
proportional to dΩ and the density of the target. From (5.27) we see that σ(θ) can be interpreted
as the effective area of a target particle for the scattering of an incident particle into the element
of solid angle dΩ. Particles that are not scattered are ignored. Another way of thinking about
σ(θ) is that it is the ratio of the area b db dϕ to the solid angle dΩ = sin θdθ dϕ, where b db dϕ is
the infinitesimal cross sectional area of the beam that scatters into the solid angle defined by θ to
θ + dθ and ϕ to ϕ + dϕ. The alternative notation for the differential cross section, dσ/dΩ, comes
from this interpretation.

To do an analytical calculation of σ(θ), we write

σ(θ) =
dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣. (5.28)

We see from (5.28) that the analytical calculation of σ(θ) involves b as a function of θ, or more
precisely, how b changes to give scattering through an infinitesimally larger angle θ + dθ.

In a scattering experiment particles enter from the left (see Figure 5.7) with random values
of the impact parameter b and azimuthal angle ϕ and the number of particles scattered into the
various detectors is measured. In our simulation we know the value of b, and we can integrate
Newton’s equations of motion to find the angle at which the incident particle is scattered. Hence,
in contrast to the analytical calculation, a simulation naturally yields θ as a function of b.

Because the differential cross section is usually independent of ϕ, we need to consider only
beam particles at ϕ = 0. We have to take into account the fact that in a real beam, there are more
particles at some values of b than at others. That is, the number of particles in a real beam is
proportional to 2πb∆b, the area of the ring between b and b+∆b, where we have integrated over
the values of ϕ to obtain the factor of 2π. Here ∆b is the interval between the values of b used in
the program. Because there is only one target in the beam, the target density is n = 1/(πR2).

The Central Force Scattering model in this chapter’s source code directory solves the dy-
namical equations of motion of Rutherford scattering from a beam of n non-interacting particles
interacting with a 1/r2 repulsive central force. Each particle has its own differential equation and
the differential cross section is approximated after every time step as the trajectories evolve. The
scattering angle is assume to be the angle of the instantaneous velocity in order to show how the
differential cross section emerges as the particles pass the scattering center.

The differential cross section is computed after every time step using a fixed relation.

// number o f b in s i s a g l o b a l v a r i a b l e
double [ ] b ins = new double [ nbins ] ; // c r ea t e a temporary b in array
double dtheta = Math . PI /( nbins ) ; // d i f f e r e n c e in ang l e between b in s
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double rad iu s= n*db ; // beam rad ius
double tota lN=0; // number o f s c a t t e r e d p a r t i c l e s
double ta rge tDens i ty=1/Math . PI/ rad iu s / rad iu s ;
// s o r t the p a r t i c l e s i n t o b in s
double b=0; // f i r s t p a r t i c l e impact parameter
for ( int i =0; i<n ; i++){

double theta=Math . abs (Math . atan2 ( vy [ i ] , vx [ i ] ) ) ; // p a r t i c l e t r a j e c t o r y ang l e
int index = ( int ) ( theta / dtheta ) ;
b ins [ index ] += b ;
tota lN += b ;
b+=db ;

}
// compute d i f f e r e n t i a l c ro s s s e c t i on
for ( int i =0; i<nbins ; i++){

theta [ i ]=( i +0.5)* dtheta ;
double domega=2*Math . PI*Math . s i n ( theta [ i ] ) * dtheta ;
sigma [ i ]= bins [ i ] / tota lN / ta rge tDens i ty /domega ;

}

The fixed relation code creates an array of bins to sort and accumulate the trajectories according
to the scattering angle. The values of the scattering angle between 0 and 180◦ are divided into
bins of width dtheta. To compute the number of particles coming from a ring of radius b, we
accumulate the value of b associated with each bin or “detector” and write bins[index] += b,
because the number of particles in a ring of radius b is proportional to b. The total number of
scattered particles is computed in the same way

tota lN += b ;

You might want to increase the number of bins and the range of angles for better resolution.

Small-angle differential cross sections from long-range forces, such as the Coulomb repulsion
in Rutherford scattering, are difficult to model because the scattering center affects particles re-
gardless of impact parameter b. The Central Force Scattering model my also fail if the scattering
center traps particles for long periods of time. These effects are studied in Problems 5.12 through
5.15.

Problem 5.12. Total cross section

The total cross section σT is defined as

σT =

∫
σ(θ) dΩ. (5.29)

Add code to the fixed relation to calculate and display the total cross section. Design a test to
verify that the ODE solver has sufficient accuracy.

In Problem 5.13, we consider a model of the hydrogen atom for which the force on a beam
particle is zero for r > a. Because we do not count the beam particles that are not scattered,
we set the beam radius equal to a. For forces that are not identically zero, we need to choose a
minimum angle for θ such that particles whose scattering angle is less than this minimum are not
counted as scattered (see Problem 5.14).
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Problem 5.13. Scattering from a model hydrogen atom

a. Consider a model of the hydrogen atom for which a positively charged nucleus of charge +e
is surrounded by a uniformly distributed negative charge of equal magnitude. The spherically
symmetric negative charge distribution is contained within a sphere of radius a. It is straight-
forward to show that the force between a positron of charge +e and this model hydrogen atom
is given by

f(r) =

{
1/r2 − r/a3, r ≤ a

0. r > a
(5.30)

We have chosen units such that e2/(4πϵ0) = 1, and the mass of the positron is unity. What
is the ionization energy in these units? Modify the ODE preliminary code page to incorporate
this force. Is the force on the positron from the model hydrogen atom purely repulsive? Choose
a = 1 and set the beam radius bmax = 1. Use E = 0.125 and ∆t = 0.01. Compute the
trajectories for b = 0.25, 0.5, and 0.75 and describe the qualitative nature of the trajectories.

b. Determine the cross section for E = 0.125. Choose nine bins so that the angular width of a
detector is delta = 20◦ and let db = 0.1, 0.01, and 0.002. How does the accuracy of your results
depend on the number of bins? Determine the differential cross section for different energies
and explain its qualitative energy dependence.

c. What is the value of σT for E = 0.125? Does σT depend on E? The total cross section has
units of area, but a point charge does not have an area. To what area does it refer? What
would you expect the total cross section to be for scattering from a hard sphere?

d. Change the sign of the force so that it corresponds to electron scattering. How do the trajectories
change? Discuss the change in σ(θ).

Problem 5.14. Rutherford scattering

a. One of the most famous scattering experiments was performed by Geiger and Marsden who
scattered a beam of alpha particles on a thin gold foil. Based on these experiments, Rutherford
deduced that the positive charge of the atom is concentrated in a small region at the center of
the atom rather than distributed uniformly over the entire atom. Use a 1/r2 force in the ODE
preliminary code page and compute the trajectories for b = 0.25, 0.5, and 0.75 and describe the
trajectories. Choose E = 5 and ∆t = 0.01. The default value of x0, the initial x-coordinate of
the beam, is x0 = −5. Is this value reasonable?

b. For E = 5 determine the cross section with nbins = 18. Choose the beam width bmax = 2.
Then vary db (or nbins) and compare the accuracy of your results to the analytical result for
which σ(θ) varies as [sin(θ/2)]−4. How do your computed results compare with this dependence
on θ? If necessary, decrease db. Are your results better or worse at small angles, intermediate
angles, or large angles near 180◦? Explain.

c. Because the Coulomb force is long range, there is scattering at all impact parameters. Increase
the beam radius and determine if your results for σ(θ) change. What happens to the total cross
section as you increase the beam width?
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d. Compute σ(θ) for different values of E and estimate the dependence of σ(θ) on E.

Problem 5.15. Scattering by other potentials

a. A simple phenomenological form for the effective interaction between electrons in metals is the
screened Coulomb (or Thomas-Fermi) potential given by

V (r) =
e2

4πϵ0r
e−r/a. (5.31)

The range of the interaction a depends on the density and temperature of the electrons. The
form (5.31) is known as the Yukawa potential in the context of the interaction between nuclear
particles and as the Debye potential in the context of classical plasmas. Choose units such
that a = 1 and e2/(4πϵ0) = 1. Recall that the force is given by f(r) = −dV/dr. Incorporate
this force law into the ODE preliminary code page and compute the dependence of σ(θ) on the
energy of the incident particle. Choose the beam width equal to 3. Compare your results for
σ(θ) with your results from the Coulomb potential.

b. Modify the force law in the preliminary code page so that f(r) = 24(2/r13−1/r7). This form for
f(r) is used to describe the interactions between simple molecules (see Chapter ??). Describe
some typical trajectories and compute the differential cross section for several different energies.
Let bmax = 2. What is the total cross section? How do your results change if you vary bmax?
Choose a small angle as the minimum scattering angle. How sensitive is the total cross section
to this minimum angle? Does the differential cross section vary for any other angles beside the
smallest scattering angle?

5.11 Three-body problems

Poincaré showed that it is impossible to obtain an analytical solution for the unrestricted motion
of three or more objects interacting under the influence of gravity. However, solutions are known
for a few special cases and it is instructive to study the properties of these solutions.

The Three Body model in the Chapter 5 source directory computes the trajectories of three
particles of equal mass moving in a plane and interacting under the influence of gravity. The initial
conditions for this model are specified in the initialization workpanel.

In 1767 Euler discovered an analytical solution in which three masses start on a line and rotate
so that the central mass stays fixed. The first mass is placed at the center and the other masses
are placed on opposite sides with velocities that are equal but opposite. Because of the symmetry,
the trajectories are ellipses with a common focus at the center.

A second analytic solution to the unrestricted three-body problem was found by Lagrange in
1772. This solution starts with three masses at the corners of an equilateral triangle. Each mass
moves in an ellipse in such a way that the triangle formed by the masses remains equilateral but
expands and contracts periodically.

A spectacular new solution that adds to the sparse list of analytic three-body solutions was
first discovered numerically by Chris Moore in 1993 and proven to be stable by Alain Chenciner
and Richard Montgomery in 2000.
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Problem 5.16. Stability of solutions to the three-body problem

Examine the stability of the three solutions to the three-body problem by slightly varying the
initial velocity of one of the masses. Show that any instability is due to the physics and not to
the numerical differential equation solver. Which of the three analytic solutions is stable? Check
conservation of the total energy and angular momentum.

Problem 5.17. N-body Orbits

Extend the Euler and Lagrange configurations in the Three Body model to N-bodies. How stable or
unstable are these new configurations? How large can you make N while maintaining the symmetry
for at least one orbit.

5.12 Projects

Project 5.18. Effect of a “solar wind”

a. Assume that a satellite is affected not only by the Earth’s gravitational force, but also by a
weak uniform “solar wind” of magnitude W acting in the horizontal direction. The equations
of motion can be written as

d2x

dt2
= −GMx

r3
+W (5.32a)

d2y

dt2
= −GMy

r3
. (5.32b)

Choose initial conditions so that a circular orbit would be obtained for W = 0. Then choose a
value of W whose magnitude is about 3% of the acceleration due to the gravitational field and
compute the orbit. How does the orbit change?

b. Determine the change in the velocity space orbit when the solar wind (5.32) is applied. How
does the total angular momentum and energy change? Explain in simple terms the previously
observed change in the position space orbit. See Luehrmann for further discussion of this
problem.

Project 5.19. Resonances and the asteroid belt

A histogram of the number of asteroids versus their distance from the Sun shows some distinct
gaps. These gaps, called the Kirkwood gaps, are due to resonance effects. That is, if asteroids were
in these gaps, their periods would be simple fractions of the period of Jupiter.

a. Modify the Two Planet model so that planet two has the mass of Jupiter by setting GM1 = 0.001*GM.
Because asteroid masses are very small compared to that of Jupiter, the gravitational force on
Jupiter due to the asteroid can be neglected. Set the initial conditions for the asteroid to the
1/3 resonance (the period of the asteroid is one third that of Jupiter). Run the model with
these changes and describe the orbit of the asteroid.
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b. Use Kepler’s third law, T 2/a3 = constant, to determine the values of a, the asteroid’s semimajor
axis, such that the ratio of its period of revolution about the Sun to that of Jupiter is 1/2, 3/7,
2/5, and 2/3. Set the initial value of x(1) equal to a for each of these ratios and choose the
initial value of vy(1) so that the asteroid would have a circular orbit if Jupiter were not present.
Describe the orbits that you obtain.

c. It is instructive to plot a as a function of time. However, because it is not straightforward to
measure a directly in the simulation, it is more convenient to plot the quantity −2GMm/E,
where E is the total energy of the asteroid and m is the mass of the asteroid. Because E is
proportional to m, the quantity −2GMm/E is independent of m. If the interaction of the
asteroid with Jupiter is ignored, it can be shown that a = −2GMm/E, where E is the asteroid
kinetic energy plus the asteroid-Sun potential energy. Derive this result for circular orbits. Plot
the quantity −2GMm/E versus time for about thirty revolutions for the initial conditions in
Problem 5.19b.

d. Compute the time dependence of −2GMm/E for asteroid orbits whose initial position x(1)

ranges from 2.0 to 5.0 in steps of 0.2. Choose the initial values of vy(1) so that circular orbits
would be obtained in the absence of Jupiter. Are there any values of x(1) for which the time
dependence of a is unusual?

e. Modify the Central Force Scattering model to model N asteroids and make a histogram of the
number of asteroids versus the value of −2GMm/E at t = 2000. Assume that the initial value
of x(1) ranges from 2.0 to 5.0 in steps of 0.02 and choose the initial values of vy(1) as before.
Use a histogram bin width of 0.1. If you have time, repeat for t = 5000, and compare the
histogram with your previous results. Is there any evidence for Kirkwood gaps? A resonance
occurs when the periods of the asteroid and Jupiter are related by simple fractions. We expect
the number of asteroids with values of a corresponding to resonances to be small.

f. Repeat part (e) with initial velocities that vary from their values for a circular orbit by 1, 3,
and 5%.

Project 5.20. The classical helium atom

The classical helium atom is a relatively simple example of a three-body problem and is similar to
the gravitational three-body problem of a heavy sun and two light planets. The important differ-
ence is that the two electrons repel one another, unlike the planetary case where the intraplanetary
interaction is attractive. If we ignore the small motion of the heavy nucleus, the equations of motion
for the two electrons can be written as

a1 = −2
r1
r31

+
r1 − r2
r312

(5.33a)

a2 = −2
r2
r32

+
r2 − r1
r312

, (5.33b)

where r1 and r2 are measured from the fixed nucleus at the origin, and r12 is the distance between
the two electrons. We have chosen units such that the mass and charge of the electron are both
unity. The charge of the helium nucleus is two in these units. Because the electrons are sometimes
very close to the nucleus, their acceleration can become very large, and a very small time step
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Figure 5.8: Orbits of the two electrons in the classical helium atom with the initial condition
r1 = (3, 0), r2 = (1, 0),v1 = (0, 0.4), and v2 = (0,−1) (see Project 5.20c).

∆t is required. It is not efficient to use the same small time step throughout the simulation and
instead a variable time step or an adaptive step size algorithm is suggested. An adaptive step size
algorithm can be used with any standard numerical algorithm for solving differential equations.
The RK45 algorithm described in Appendix 3A is adaptive and is a good all-around choice for
these types of problems.

a. For simplicity, we restrict our atom to two dimensions. Modify the Two Planets model to
simulate the classical helium atom. Choose units such that the electron mass is one and the
other constants are absorbed into the unit of charge so that the force between two electrons is

|F | = 1

r2
. (5.34)

Choose the initial value of the time step to be ∆t = 0.001. Some of the possible orbits are
similar to those we have seen in our mini-solar system. For example, try the initial condition
r1 = (2, 0), r2 = (−1, 0),v1 = (0, 0.95), and v2 = (0,−1).

b. Most initial conditions result in unstable orbits in which one electron eventually leaves the
atom (autoionization). The initial condition r1 = (1.4, 0), r2 = (−1, 0),v1 = (0, 0.86), and
v2 = (0,−1) gives “braiding” orbits. Make small changes in this initial condition to observe
autoionization.
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c. The classical helium atom is capable of very complex orbits (see Figure 5.8). Investigate the
motion for the initial condition r1 = (3, 0), r2 = (1, 0),v1 = (0, 0.4), and v2 = (0,−1). Does the
motion conserve the total angular momentum? Also try r1 = (2.5, 0), r2 = (1, 0),v1 = (0, 0.4),
and v2 = (0,−1).

d. Choose the initial condition r1 = (2, 0), r2 = (−1, 0), and v2 = (0,−1). Then vary the initial
value of v1 from (0.6, 0) to (1.3, 0) in steps of ∆v = 0.02. For each set of initial conditions
calculate the time it takes for autoionization. Assume that ionization occurs when either electron
exceeds a distance of six from the nucleus. Run each simulation for a maximum time of 2000.
Plot the ionization time versus v1x. Repeat for a smaller interval of ∆v centered about one of
the longer ionization times. These calculations require much computer resources. Do the two
plots look similar? If so, such behavior is called “self-similar” and is characteristic of chaotic
systems and the geometry of fractals (see Chapters 6 and ??). More discussion on the nature
of the orbits can be found in Yamamoto and Kaneko.
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