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We explore the behavior of oscillatory systems, including the simple harmonic oscillator, a simple
pendulum, and electrical circuits and we introduce the concept of phase space. We also show how
the EJS ODE editor is used to solve arrays of differential equations.

4.1 Simple Harmonic Motion

There are many physical systems that undergo regular, repeating motion. Motion that repeats
itself at definite intervals, for example, the motion of the Earth about the Sun, is said to be periodic.
If an object undergoes periodic motion between two limits over the same path, we call the motion
oscillatory. Examples of oscillatory motion that are familiar to us from our everyday experience
include a plucked guitar string and the pendulum in a grandfather clock. Less obvious examples
are microscopic phenomena such as the oscillations of the atoms in crystalline solids.

To illustrate the important concepts associated with oscillatory phenomena, consider a block
of mass m connected to the free end of a spring. The block slides on a frictionless, horizontal
surface (see Figure 4.1). We specify the position of the block by x and take x = 0 to be the
equilibrium position of the block, that is, the position when the spring is relaxed. If the block is
moved from x = 0 and then released, the block oscillates along a horizontal line. If the spring is
not compressed or stretched too far from x = 0, the force on the block at position x is proportional
to x:

F = −kx. (4.1)

The force constant k is a measure of the stiffness of the spring. The negative sign in (4.1) implies
that the force acts to restore the block to its equilibrium position. Newton’s equation of motion
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Figure 4.1: A one-dimensional harmonic oscillator. The block slides horizontally on the frictionless
surface.

for the block can be written as
d2x

dt2
= −ω0

2x, (4.2)

where the angular frequency ω0 is defined by

ω0
2 =

k

m
. (4.3)

The dynamical behavior described by (4.2) is called simple harmonic motion and can be solved
analytically in terms of sine and cosine functions. Because the form of the solution will help us
introduce some of the terminology needed to discuss oscillatory motion, we include the solution
here. One form of the solution is

x(t) = A cos(ω0t + δ), (4.4)

where A and δ are constants and the argument of the cosine is in radians. It is straightforward
to check by substitution that (4.4) is a solution of (4.2). The constants A and δ are called the
amplitude and the phase respectively, and are determined by the initial conditions for x and the
velocity v = dx/dt.

Because the cosine is a periodic function with period 2π, we know that x(t) in (4.4) also is
periodic. We define the period T as the smallest time for which the motion repeats itself, that is,

x(t + T ) = x(t). (4.5)

Because ω0T corresponds to one cycle, we have

T =
2π

ω0
=

2π√
k/m

. (4.6)

The frequency ν of the motion is the number of cycles per second and is given by ν = 1/T . Note
that T depends on the ratio k/m and not on A and δ. Hence the period of simple harmonic motion
is independent of the amplitude of the motion.
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Although the position and velocity of the oscillator are continuously changing, the total energy
E remains constant and is given by

E =
1
2
mv2 +

1
2
kx2 =

1
2
kA2. (4.7)

The two terms in (4.7) are the kinetic and potential energies, respectively.
We introduced the SHO model in Chapter 3 and now study it in more detail. Open this

chapter’s SHO Solver Comparison model in the Chapter 4 source directory and use it as a template
for the following problems.

Problem 4.1. Energy conservation

a. Add an energy error (energy drift) plot ∆E = En − E0 to the SHO Solver Comparison model
where En is the energy after the nth evolution step and E0 is the initial energy.

b. Describe the qualitative differences of the SHO energy drift using the various algorithms in
the SHO Comparison model. Which algorithm is most consistent with the requirement of
conservation of energy? For fixed ∆t, which algorithm yields better results for the position
in comparison to the analytical solution (4.4)? Is the requirement of conservation of energy
consistent with the relative accuracy of the computed positions?

c. Choose an algorithm based on your criteria, and determine the values of ∆t that are needed to
conserve the total energy to within 0.1% over one cycle for ω0 = 3 and for ω0 = 12. Can you
use the same value of ∆t for both values of ω0? If not, how do the values of ∆t correspond to
the relative values of the period in the two cases?

Problem 4.2. Analysis of simple harmonic motion

a. Use your results from Problem 4.1 to select an appropriate numerical algorithm and value of
∆t for the simple harmonic oscillator and modify your model so that the time dependence of
the potential and kinetic energies is plotted. Where in the cycle is the kinetic energy (potential
energy) a maximum?

b. Numerically compute the average value of the kinetic energy and the potential energy during a
complete cycle. What is the relation between the two averages?

c. Compute x(t) for different values of A and show that the shape of x(t) is independent of A, that
is, show that x(t)/A is a universal function of t for a fixed value of ω0. In what units should
the time be measured so that the ratio x(t)/A is independent of ω0?

d. The dynamical behavior of the one-dimensional oscillator is completely specified by x(t) and
p(t), where p is the momentum of the oscillator. These quantities may be interpreted as the
coordinates of a point in a two-dimensional space known as phase space. As the time increases,
the point (x(t), p(t)) moves along a trajectory in phase space. Modify your model so that
the momentum p is plotted as a function of x, that is, choose p and x as the vertical and
horizontal axes respectively. Choose ω0 = 3 and compute the phase space trajectory for the
initial condition x(t = 0) = 1, v(t = 0) = 0. What is the shape of this trajectory? What is the
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shape for the initial conditions, x(t = 0) = 0, v(t = 0) = 1 and x(t = 0) = 4, v(t = 0) = 0?
Do you find a different phase trajectory for each initial condition? What physical quantity
distinguishes the phase trajectories? Is the motion of a representative point (x, p) always in the
clockwise or counterclockwise direction?

Problem 4.3. Lissajous figures
A computer display can be used to simulate the output seen on an oscilloscope. Imagine that the
vertical and horizontal inputs to an oscilloscope are sinusoidal in time, that is, x = Ax sin(ωxt+φx)
and y = Ay sin(ωyt+φy). If the curve that is drawn repeats itself, such a curve is called a Lissajous
figure. Create a model to display y versus x, as t advances from t = 0. First choose Ax = Ay = 1,
ωx = 2, ωy = 3, φx = π/6, and φy = π/4. For what values of the angular frequencies ωx and ωy

do you obtain a Lissajous figure? How do the phase factors φx and φy and the amplitudes Ax and
Ay affect the curves?

The time dependent models we have developed generate time-series data as variables evolve
but there are many phenomena that evolve entire functions f(x, t). Such wave functions are
ubiquitous in nature and give rise to important oscillatory phenomena such as beats and standing
waves. We will study the behavior of waves more systematically in Chapter ?? but we start to
investigate their behavior in Problem 4.4 in order to learn how to plot time-varying functions. The
Traveling Wave model in the Chapter 4 source directory plots A sin(kx + ωt) from x = xmin to
x = xmax as a function of t. For simplicity we take A = 1, ω = 2π, and k = 2π/λ with wavelength
λ = 2. The model uses an array to store the wave function and updates the entire wave function
after every evolution step.

Problem 4.4. Superposition of waves

a. Add a circle to the model that is draggable in the x-direction but that follows the height of the
wave in the y-direction. Hint: Use the circle’s On Drag action to set its y-position from the
wave function.

b. Modify the Traveling Wave model so that it plots the sum of y1 = sin(kx − ωt) and y2 =
sin(kx+ωt). The quantity y1 +y2 corresponds to the superposition of two waves. Choose λ = 2
and ω = 2π. What kind of a wave do you obtain?

c. Modify your model to demonstrate beats by plotting y1 + y2 as a function of time in the
range xmin = −10 and xmax = 10. Determine the beat frequency for each of the following
superpositions: y1(x, t) = sin[8.4(x − 1.1t)], y2(x, t) = sin[8.0(x − 1.1t)]; y1(x, t) = sin[8.4(x −
1.2t)], y2(x, t) = sin[8.0(x− 1.0t)]; and y1(x, t) = sin[8.4(x− 1.0t)], y2(x, t) = sin[8.0(x− 1.2t)].
What difference do you observe between these superpositions?

4.2 The Motion of a Pendulum

A common example of a mechanical system that exhibits oscillatory motion is the simple pendulum
(see Figure 4.2). A simple pendulum is an idealized system consisting of a particle or bob of mass
m attached to the lower end of a rigid rod of length L and negligible mass; the upper end of the rod
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Figure 4.2: Force diagram for a simple pendulum. The angle θ is measured from the vertical
direction and is positive if the mass is to the right of the vertical and negative if it is to the left.

pivots without friction. If the bob is pulled to one side from its equilibrium position and released,
the pendulum swings in a vertical plane.

Because the bob is constrained to move along the arc of a circle of radius L about the center
O, the bob’s position is specified by its arc length or by the angle θ (see Figure 4.2). The linear
(tangential) velocity and acceleration of the bob as measured along the arc are given by

v = L
dθ

dt
(4.8)

a = L
d2θ

dt2
. (4.9)

In the absence of friction, two forces act on the bob: the force mg vertically downward and the
force of the rod which is directed inward to the center if |θ| < π/2. Note that the effect of the
rigid rod is to constrain the motion of the bob along the arc. From Figure 4.2, we can see that the
component of mg along the arc is mg sin θ in the direction of decreasing θ. Hence, the equation of
motion can be written as

mL
d2θ

dt2
= −mg sin θ, (4.10)

or
d2θ

dt2
= − g

L
sin θ. (4.11)

Equation (4.11) is an example of a nonlinear equation because sin θ rather than θ appears.
Most nonlinear equations do not have analytical solutions in terms of well-known functions, and
(4.11) is no exception. However, if the amplitude of the pendulum oscillations is sufficiently small,
then sin θ ≈ θ, and (4.11) reduces to

d2θ

dt2
≈ − g

L
θ. (θ ¿ 1) (4.12)

Remember that θ is measured in radians.
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Part of the fun of studying physics comes from realizing that equations that appear in different
contexts often are similar. An example can be seen by comparing (4.2) and (4.12). If we associate
x with θ, we see that the two equations are identical in form, and we can immediately conclude
that for θ ¿ 1, the period of a pendulum is given by

T = 2π

√
L

g
. (small amplitude oscillations) (4.13)

One way to understand the motion of a pendulum with large oscillations is to solve (4.11)
numerically. Because we know that the numerical solutions must be consistent with conservation
of energy, we derive the form of the total energy here. The potential energy can be found from
the following considerations. If the rod is deflected by the angle θ, then the bob is raised by the
distance h = L−L cos θ (see Figure 4.2). Hence, the potential energy of the bob in the gravitational
field of the earth is

U = mgh = mgL(1− cos θ), (4.14)

where the zero of the potential energy corresponds to θ = 0. Because the kinetic energy of the
pendulum is 1

2mv2 = 1
2mL2(dθ/dt)2, the total energy E of the pendulum is

E =
1
2
mL2

(dθ

dt

)2

+ mgL(1− cos θ). (4.15)

Problem 4.5. Oscillations of a pendulum

a. Modify the Simple Pendulum model in the Chapter 4 source directory so that the numerical
solution is plotted. Note that this simulation uses units such that g = 1 to slow the animation.
Note also that the plotting panel’s Axis Type property has been set to display polar coordinates
and that the angle θ rotates multiple elements within the view as explained in Appendix 4A.

b. Make the necessary changes to the Simple Pendulum model so that the analytical solution for
small angles also is plotted. Test the model at sufficiently small amplitudes so that sin θ ≈ θ.
Choose the initial conditions θ(t = 0) = 0.2 and dθ(t = 0)/dt = 0. Determine the period
numerically and compare your result to the expected analytical result for small amplitudes
ω0 =

√
g/L. Explain your method for determining the period. Estimate the error due to the

small angle approximation for these initial conditions.

c. Consider larger amplitudes and make plots of θ(t) and dθ(t)/dt versus t for the initial conditions
θ(t = 0) = 0.1, 0.2, 0.4, 0.8, and 1.0 with dθ(t = 0)/dt = 0. Choose ∆t so that the numerical
algorithm generates a stable solution, that is, monitor the total energy and ensure that it does
not drift from its initial value. Describe the qualitative behavior of θ and dθ/dt. What is the
period T and the amplitude θmax in each case? Plot T versus θmax and discuss the qualitative
dependence of the period on the amplitude. How do your results for T compare in the linear
and nonlinear cases, for example, which period is larger? Explain the relative values of T in
terms of the relative magnitudes of the restoring force in the two cases.
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4.3 Damped Harmonic Oscillator

We know from experience that most oscillatory motion in nature gradually decreases until the
displacement becomes zero; such motion is said to be damped and the system is said to be dissipative
rather than conservative. As an example of a damped harmonic oscillator, consider the motion
of the block in Figure 4.1 when a horizontal drag force is included. For small velocities, it is a
reasonable approximation to assume that the drag force is proportional to the first power of the
velocity. In this case the equation of motion can be written as

d2x

dt2
= −ω0

2x− γ
dx

dt
. (4.16)

The damping coefficient γ is a measure of the magnitude of the drag term. Note that the drag
force in (4.16) opposes the motion. We simulate the behavior of the damped linear oscillator in
Problem 4.6.

Problem 4.6. Damped linear oscillator

a. Incorporate the effects of damping into your Simple Harmonic Oscillator model and plot the
time dependence of the position and the velocity. Describe the qualitative behavior of x(t) and
v(t) for ω0 = 3 and γ = 0.5 with x(t = 0) = 1, v(t = 0) = 0.

b. The period of the motion is the time between successive maxima of x(t). Use an ODE event
to measure the period and corresponding angular frequency and compare their values to the
undamped case. Is the period longer or shorter? Make additional runs for γ = 1, 2, and 3.
Does the period increase or decrease with greater damping? Why?

c. The amplitude is the maximum value of x during one cycle. Compute the relaxation time τ , the
time it takes for the amplitude of an oscillation to decrease by 1/e ≈ 0.37 from its maximum
value. Is the value of τ constant throughout the motion? Compute τ for the values of γ
considered in part (b) and discuss the qualitative dependence of τ on γ.

d. Plot the total energy as a function of time for the values of γ considered in part (b). If the
decrease in energy is not monotonic, explain.

e. Compute the time dependence of x(t) and v(t) for γ = 4, 5, 6, 7, and 8. Is the motion oscillatory
for all γ? How can you characterize the decay? For fixed ω0, the oscillator is said to be critically
damped at the smallest value of γ for which the decay to equilibrium is monotonic. For what
value of γ does critical damping occur for ω0 = 4 and ω0 = 2? For each value of ω0, compute
the value of γ for which the system approaches equilibrium most quickly.

f. Compute the phase space diagram for ω0 = 3 and γ = 0.5, 2, 4, 6, and 8. Why does the phase
space trajectory converge to the origin, x = 0, v = 0? This point is called an attractor. Are
these qualitative features of the phase space plot independent of γ?

Problem 4.7. Damped nonlinear pendulum
Consider a damped pendulum with ω0 =

√
g/L and a damping term equal to −γdθ/dt. Choose

γ = 1 and the initial condition θ(t = 0) = 0.2, dθ(t = 0)/dt = 0. In what ways is the motion of the
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damped nonlinear pendulum similar to the damped linear oscillator? In what ways is it different?
What is the shape of the phase space trajectory for the initial condition θ(t = 0) = 1, ω(t = 0) = 0?
Do you find a different phase trajectory for other initial conditions? Remember that θ is restricted
to be between −π and +π.

4.4 Response to External Forces

Figure 4.3: A comparison of fifty-one oscillators with differing natural frequencies. All oscillators
are driven with a synchronous external sinusoidal force.

How can we determine the period of an oscillator that is not already in motion? The obvious
way is to disturb the system, for example, to displace the mass and observe its motion. We will
find that the nature of the response of the system to a small perturbation tells us something about
the nature of the system in the absence of the perturbation.

Consider the driven damped linear oscillator with an external force F (t) in addition to the
linear restoring force and linear damping force. The equation of motion can be written as

d2x

dt2
= −ω0

2x− γv +
1
m

F (t). (4.17)

It is customary to interpret the response of the system in terms of the displacement x rather than
the velocity v.

The time dependence of F (t) in (4.17) is arbitrary. Because many forces in nature are periodic,
we first consider the form

1
m

F (t) = A0 cos ωt, (4.18)

where ω is the angular frequency of the driving force.
The Driven SHO Comparison model shown in Figure 4.3 and available in the Chapter 4 source

directory displays fifty-one driven harmonic oscillators with identical spring constants but slightly
different masses. These oscillators are driven with a sinusoidal force with an angular frequency
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equal to (k/m)1/2 for the oscillator at the center of the display. Run this model and observe the
differing response of each of theses oscillators. We study these differences in Problems 4.8 and 4.9.

Exercise 4.8. Driven damped linear oscillator comparison
Run the Driven SHO Comparison model and note the red arrow to the left of the oscillators

showing the driving force that is applied to each oscillator.

a. The driven damped linear oscillators shown settle into a steady state after a certain time. How
long does it take for the steady state behavior to emerge if the damping coefficient is b = 0.1?
If b = 0.2?

b. How does the damping coefficient affect the maximum displacement of the center mass?

c. Run the model and describe the steady state pattern at the instant when the driving force is
zero? When the force is a maximum? Why are these two patterns different?

Problem 4.9. Response of a driven damped linear oscillator analysis

a. Modify your Simple Harmonic Oscillator model so that an external force of the form (4.18) is
included. Add this force by creating a custom method so that the rate in the ODE evolution
page is written as dvx/dt = force(x, vx, t)/m. The angular frequency of the driving force should
be added as a global variable with an input field.

b. Choose ω0 = 3, γ = 0.5, ω = 2 and the amplitude of the external force A0 = 1 for all
runs unless otherwise stated. For these values of ω0 and γ, the dynamical behavior in the
absence of an external force corresponds to an underdamped oscillator. Plot x(t) versus t in
the presence of the external force with the initial condition, x(t = 0) = 1, v(t = 0) = 0. How
does the qualitative behavior of x(t) differ from the nonperturbed case? What is the period
and angular frequency of x(t) after several oscillations? Repeat the same observations for x(t)
with x(t = 0) = 0, v(t = 0) = 1. Identify a transient part of x(t) that depends on the initial
conditions and decays in time, and a steady state part that dominates at longer times and is
independent of the initial conditions.

c. Compute x(t) for several combinations of ω0 and ω. What is the period and angular frequency
of the steady state motion in each case? What parameters determine the frequency of the steady
state behavior?

d. A measure of the long-term behavior of the driven harmonic oscillator is the amplitude of
the steady state displacement A(ω), which can be be computed for a given value of ω if the
simulation is run until a steady state has been achieved. One way to determine A is to use a
zero crossing event to record the time and position when the velocity is zero.

e. Measure the amplitude and phase shift to verify that the steady state behavior of x(t) is given
by

x(t) = A(ω) cos(ωt + δ). (4.19)

The quantity δ is the phase difference between the applied force and the steady state motion.
Compute A(ω) and δ(ω) for ω0 = 3, γ = 0.5, and ω = 0, 1.0, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2,
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and 3.4. Choose the initial condition, x(t = 0) = 0, v(t = 0) = 0. Repeat the simulation for
γ = 3.0, and plot A(ω) and δ(ω) versus ω for the two values of γ. Discuss the qualitative
behavior of A(ω) and δ(ω) for the two values of γ. If A(ω) has a maximum, determine the
angular frequency ωmax at which the maximum of A occurs. Is the value of ωmax close to the
natural angular frequency ω0? Compare ωmax to ω0 and to the frequency of the damped linear
oscillator in the absence of an external force.

f. Compute x(t) and A(ω) for a damped linear oscillator with the amplitude of the external force
A0 = 4. How do the steady state results for x(t) and A(ω) compare to the case A0 = 1? Does
the transient behavior of x(t) satisfy the same relation as the steady state behavior?

g. What is the shape of the phase space trajectory for the initial condition x(t = 0) = 1, v(t =
0) = 0? Do you find a different phase trajectory for other initial conditions?

h. Why is A(ω = 0) < A(ω) for small ω? Why does A(ω) → 0 for ω À ω0?

i. Does the mean kinetic energy resonate at the same frequency as does the amplitude? Compute
the mean kinetic energy over one cycle once steady state conditions have been reached. Choose
ω0 = 3 and γ = 0.5.

In Problem 4.9 we found that the response of the damped harmonic oscillator to an external
driving force is linear. For example, if the magnitude of the external force is doubled, then the
magnitude of the steady state motion also is doubled. This behavior is a consequence of the linear
nature of the equation of motion. When a particle is subject to nonlinear forces, the response can
be much more complicated (see Section 4.2 and Chapter 6).

For many problems, the sinusoidal driving force in (4.18) is not realistic. Another example
of an external force can be found by observing someone pushing a child on a swing. Because the
force is nonzero only for short intervals of time, this type of force is impulsive. In the following
problem, we consider the response of a damped linear oscillator to an impulsive force.

∗Problem 4.10. Response of a damped linear oscillator to nonsinusoidal external forces

a. Assume a swing can be modeled by a damped linear oscillator and that the swing is pushed
at the instant it reaches its maximum negative displacement. The effect of this push (impulse)
is to change the velocity and this push occurs once every period. One way to implement this
scenario is with an ODE event. Add a positive crossing ODE event to your undriven SHO
model with the following zero condition:

return v ;

This event is triggered when the velocity changes from positive to negative. Because we assume
the push is instantaneous, we model the effect by changing the velocity (momentum)

v += 0 . 1 ;

Determine the steady state amplitude A(ω) for ω = 1.0, 1.3, 1.4, 1.5, 1.6, 2.5, 3.0, and 3.5. The
corresponding period of the impulse is given by T = 2π/ω. Choose ω0 = 3 and γ = 0.5. Are
your results consistent with your experience of pushing a swing and with the comparable results
of Problem 4.9?
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Figure 4.4: A half-wave driving force corresponding to the positive part of a cosine function.

b. Consider the response to a half-wave external force consisting of the positive part of a cosine
function (see Figure 4.4). This force can be coded as

double f o r c e=Math .max(0 ,Math . cos ( omega* t ) ) ;

but we must be careful to choose a small time step so as not to miss the onset of the discontinuous
force.1

Compute A(ω) for ω0 = 3 and γ = 0.5. At what values of ω does A(ω) have a relative maxima? Is
the half-wave cosine driving force equivalent to a sum of cosine functions of different frequencies?
For example, does A(ω) have more than one resonance?

c. Compute the steady state response x(t) to the external force

1
m

F (t) =
1
π

+
1
2

cos t +
2
3π

cos 2t− 2
15π

cos 4t. (4.20)

How does a plot of F (t) versus t compare to the half-wave cosine function? Use your results to
conjecture a principle of superposition for the solutions to linear equations.

In many of the problems in this chapter we have asked you to draw a phase space plot for a
single oscillator. This plot provides a convenient representation of both the position and velocity.
When we study chaotic phenomena such plots will become almost indispensable (see Chapter 6).
Here we will consider an important feature of phase space trajectories for conservative systems.

If there are no external forces, the undamped simple harmonic oscillator and undamped pendu-
lum are examples of conservative systems, that is, systems for which the total energy is a constant.
In Problems 4.11 and 4.12 we will study two general properties of conservative systems, the non-
intersecting nature of their trajectories in phase space and the preservation of area in phase space.
These concepts will become more important when we study the properties of conservative systems
with more than one degree of freedom.

Problem 4.11. Trajectory of a simple harmonic oscillator in phase space
1Strictly speaking, finite difference ODE algorithms assume that the rates are continuous but the difference is

not noticeable if the time step is small. The correct approach for high-accuracy modeling is trigger an event at the
discontinuity that resets the differential equation initial conditions before continuding the solution.
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Figure 4.5: What happens to a given area in phase space for conservative systems?

a. We explore the phase space behavior of a single harmonic oscillator by simulating N initial
conditions simultaneously. Modify the Driven SHO Comparison model to simulate N identical
simple harmonic oscillators each of which is represented by a small circle centered at its position
and velocity in phase space as shown in Fig. 4.5. Choose N = 16 and consider random initial
positions and velocities. Do the phase space trajectories for different initial conditions ever
cross? Explain your answer in terms of the uniqueness of trajectories in a deterministic system.

b. Choose a set of initial conditions that form a rectangle (see Figure 4.5). Does the shape of this
area change with time? What happens to the total area in comparison to the original area?

Problem 4.12. Trajectory of a pendulum in phase space

a. Modify your model from Problem 4.11 so that the phase space trajectories (ω versus θ) of
N = 16 pendula with different initial conditions can be compared. Plot several phase space
trajectories for different values of the total energy. Are the phase space trajectories closed?
Does the shape of the trajectory depend on the total energy?

b. Choose a set of initial conditions that form a rectangle in phase space, and plot the state of
each pendulum as a circle. Does the shape of this area change with time? What happens to
the total area?

4.5 Frequency Response

Measuring the frequency response of an oscillator by adjusting the drive frequency and observing
the steady-state behavior is tedious. The SHO Frequency Response model shown in Figure 4.6
automates this analysis by performing evolution steps with ∆t equal to 1000 drive cycles. In order
to obtain an accurate solution for this long time interval, we must advance the dynamical variable
using many smaller time steps. Unfortunately, we do not know the optimal step size nor do we
wish to track of the many steps needed. EJS elegantly solves both problems using adaptive step
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Figure 4.6: .

algorithms and by performing multiple ODE steps to achieve the requested evolution. Adaptive
step algorithms, such as Cash-Karp and Dormand-Prince, automatically adjust the ODE step size
so as to achieve a specified accuracy. This optimal step size almost never matches the evolution step
specified by the model. If the optimal step size is larger than the evolution step, EJS computes the
solution using the optimal step size and interpolates this solution back in time to set the dynamical
variables. If the optimal step size is smaller than the requested step, EJS performs multiple steps
until the requested time is achieved. This hybrid approach produces a solution that is uniformly
spaced and is guaranteed to be as accurate as the requested tolerance. Because the ODE algorithm
operates at high efficiency, the steady state can be computed within a single evolution step in the
SHO Frequency Response model. (See Appendix 5.1A for a further discussion of adaptive solvers.)

We study the SHO Frequency Response model in Problem 4.13 to understand the physics
and to learn how to adapt the ODE step size. The ODE solver advances the dynamical variables
using the Cash-Karp adaptive step algorithm to advance the differential equation for many cycles
with a solution tolerance of 10−4. The Record Data workpanel then computes the amplitude of
oscillation and increments the frequency in preparation for the next evolution step. Note that the
input field actions for the mass and damping coefficient initialize the ODE but do not clear the
display so that multiple resonance curves can be compared.

Problem 4.13. Frequency response

a. How does the resonance change if mass is increased while the damping remains constant?

b. How does the resonance change if the damping parameter is increased while the mass remains
constant?

c. Vary the number of transient cycles to estimate how many drive cycles can be computed without
slowing the simulation.
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d. Modify the model to simulate pendulum motion. How does the shape of the pendulum resonance
differ from the simple harmonic oscillator resonance? How do these differences depend on the
damping parameter?

4.6 Electrical Circuit Oscillations

In this section we discuss several electrical analogues of the mechanical systems that we have
considered. Although the equations of motion are similar in form, it is convenient to consider
electrical circuits separately, because the nature of the questions of interest is somewhat different.

The starting point for electrical circuit theory is Kirchhoff’s loop rule, which states that the
sum of the voltage drops around a closed path of an electrical circuit is zero. This law is a
consequence of conservation of energy, because a voltage drop represents the amount of energy
that is lost or gained when a unit charge passes through a circuit element. The relations for the
voltage drops across each circuit element are summarized in Table 4.1.

element voltage drop symbol units
resistor VR = IR resistance R ohms (Ω)
capacitor VC = Q/C capacitance C farads (F )
inductor VL = L dI/dt inductance L henries (H)

Table 4.1: The voltage drops across the basic electrical circuit elements. Q is the charge (coulombs)
on one plate of the capacitor, and I is the current (amperes).

Imagine an electrical circuit with an alternating voltage source Vs(t) attached in series to a
resistor, inductor, and capacitor (see Figure 4.7). The corresponding loop equation is

VL + VR + VC = Vs(t). (4.21)

The voltage source term Vs in (4.21) is the emf and is measured in units of volts. If we substitute
the relationships shown in Table 4.1, we find

L
d2Q

dt2
+ R

dQ

dt
+

Q

C
= Vs(t), (4.22)

where we have used the definition of current I = dQ/dt. We see that (4.22) for the series RLC
circuit is identical in form to the damped harmonic oscillator (4.17). The analogies between ideal
electrical circuits and mechanical systems are summarized in Table 4.2.

Although we are already familiar with (4.22), we first consider the dynamical behavior of an
RC circuit described by

RI(t) = R
dQ

dt
= Vs(t)− Q

C
. (4.23)

Two RC circuits corresponding to (4.23) are shown in Figure 4.8. Although the loop equation
(4.23) is identical regardless of the order of placement of the capacitor and resistor in Figure 4.8, the
output voltage measured by the oscilloscope in Figure 4.8 is different. We will see in Problem 4.14



CHAPTER 4. OSCILLATIONS 111

Vs

C

R

L

Figure 4.7: A simple series RLC circuit with a voltage source Vs.

Electric circuit Mechanical system
charge Q displacement x
current I = dQ/dt velocity v = dx/dt
voltage drop force
inductance L mass m
inverse capacitance 1/C spring constant k
resistance R damping γ

Table 4.2: Analogies between electrical parameters and mechanical parameters.

that these circuits act as filters that pass voltage components of certain frequencies while rejecting
others.

An advantage of a computer simulation of an electrical circuit is that the measurement of a
voltage drop across a circuit element does not affect the properties of the circuit. In fact, digital
computers often are used to optimize the design of circuits for special applications. The RC Circuit
model simulates a resistor and a capacitor in series with either a sinusoidal or a square wave source
voltage Vs(t and plots the time dependence of the voltage drops across the source, the resistor,
and the capacitor. You are asked to modify this model in Problem 4.14.

Problem 4.14. Simple filter circuits

a. Modify the RC Circuit model to display the voltage across the resistor in order to simulate the
voltages in an RC high-pass filter. Your model should plot the voltage across the resistor, VR,
in addition to the voltage across the source Vs and the voltage across the capacitor VC. Run
this simulation with R = 1000Ω and C = 1.0 µF (10−6 farads). Find the steady state amplitude
of the voltage drops across the resistor and across the capacitor as a function of the angular
frequency ω of the source voltage Vs = cos ωt. Consider the frequencies f = 10, 50, 100, 160,
200, 500, 1000, 5000, and 10000 Hz. (Remember that ω = 2πf .) Use these results to explain
how an LR circuit can be used as a low pass or a high pass filter. Note that the time step ∆t
should be no larger than 1/10 of the voltage source period to obtain a smooth curve. What
is a reasonable value of ∆t for f = 10000 Hz? The model uses an adaptive ODE solver so the
internal (hidden) time step may be smaller to achieve the specified accuracy.

b. Examine the voltage drops across the inductor and resistor as a function of time and determine
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Figure 4.8: Examples of RC circuits used as low and high pass filters. Which circuit is which?
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Figure 4.9: Square wave voltage with period T and unit amplitude.

the phase differences φR and φL between the resistor and the voltage source and the inductor
and the voltage source. The phase difference φ can be found by finding the time tm between the
corresponding maxima of the voltages. Because φ is usually expressed in radians, we have the
relation φ/2π = tm/T , where T is the period of the oscillation. What is the phase difference φC

between the capacitor and the voltage source and the phase difference φR between the resistor
and the voltage source? Do these phase differences depend on ω? Does the current lead or lag
the voltage, that is, does the maxima of VR(t) come before or after the maxima of Vs(t)? What
is the phase difference between the capacitor and the resistor? Does the latter difference depend
on ω?

Problem 4.15. RC frequency response
The output voltage depends on where the digital oscilloscope is connected. What is the output
voltage of the oscilloscope in Figure 4.8a? Modify the SHO Frequency Response model in Prob-
lem 4.13 to display the ratio of the steady state amplitude of the output voltage to the amplitude
of the input voltage as a function of ω. Use a logarithmic scale for ω. What range of frequencies
is passed? Does this circuit act as a high pass or a low pass filter? Answer the same questions for
the oscilloscope in Figure 4.8b. Use your results to explain the operation of a high and low pass
filter. Compute the value of the cutoff frequency for which the amplitude of the output voltage
drops to 1/

√
2 (half-power) of the input value. How is the cutoff frequency related to RC?



CHAPTER 4. OSCILLATIONS 113

Exercise 4.16. Square wave response of an RC circuit
The RC Circuit model has a square wave voltage option as shown in Figure 4.9. Use a 1.0 µF
capacitor and a 3000 Ω resistor and observe the computed voltage drop across the capacitor as a
function of time. Make sure the period of the square wave is long enough so that the capacitor is
fully charged during one half-cycle. What is the approximate time dependence of VC(t) while the
capacitor is charging (discharging)?

We now study the steady state behavior of the series RLC circuit shown in Figure 4.7 and
represented by (4.22) using the RLC Circuit model in this chapter’s source code directory. The
response of an electrical circuit is the current rather than the charge on the capacitor. Because
we have simulated the analogous mechanical system, we already know much about the behavior of
driven the driven RLC model. Nonetheless, we will find several interesting features of AC electrical
circuits in the following problems.

Problem 4.17. RLC circuit

a. The RLC Circuit model computes the voltage drops across the resistor, capacitor, and inductor
circuit elements with an AC voltage source of the form V (t) = V0 cosωt. Modify the model to
display the current I as a function of time and determine the maximum steady state current
Imax for different values of ω with R = 100Ω, C = 3.0 µF, and L = 2 mH. Find the value of
ω at which the steady state current amplitude is a maximum. This value of ω is the resonant
frequency .

b. Observe the time dependence of the voltage drops across each circuit element for approximately
fifteen frequencies ranging from 1/10 to 10 times the resonant frequency. Sketch the resonance
curve by plotting the steady state current amplitude as a function of ω.

c. Vary the resistance and observe the steady state voltage amplitudes across the inductor and the
capacitor at the resonant frequency. How do these voltage drops compare to the voltage drop
across the resistor and the source voltage? Also compare the relative phases of VC and VL at
resonance. Explain how an RLC circuit can be used to amplify the input voltage.

Problem 4.18. RLC power
The instantaneous power P (t) is the product of the current through and the voltage across a

circuit element. Modify the RLC Circuit model to display the instantaneous power delivered to
each circuit element including the voltage source Vs. Explain why the instantaneous power can be
positive or negative. Examine your plots to estimate the average power delivered to the various
circuit elements at resonance.

Problem 4.19. RLC frequency response

a. Modify the SHO Frequency Response model introduced in Problem 4.13 to display the RLC
steady state current as a function of frequency.
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b. The sharpness of the resonance curve of an AC circuit is related to the quality factor or Q value.
(Q should not be confused with the charge on the capacitor.) The sharper the resonance, the
larger the value of Q. Circuits with high Q (and hence a sharp resonance) are useful for tuning
circuits in a radio so that only one station is heard at a time. We define Q = ω0/∆ω, where
the width ∆ω is the frequency interval between points on the resonance curve Imax(ω) that are√

2/2 of Imax at its maximum. Compute Q for the values of R, L, and C given in part (a).
Change the value of R by 10% and compute the corresponding percentage change in Q. What
is the corresponding change in Q if L or C is changed by 10%?

c. The ratio of the steady state amplitude of the sinusoidal source voltage to the amplitude of the
current is called the impedance Z of the circuit, that is, Z = Vmax/Imax. This definition of Z
is a generalization of the resistance that is defined by the relation V = IR for direct current
circuits. Measure Imax and Vmax at different frequencies and verify that the impedance is given
by

Z(ω) =
√

R2 + (ωL− 1/ωC)2. (4.24)

For what value of ω is Z a minimum? Note that the relation V = IZ holds only for the
maximum values of I and V and not for I and V at any time.

d. Compute the phase difference φR between the voltage drop across the resistor and the voltage
source. Consider ω ¿ ω0, ω = ω0, and ω À ω0. Does the current lead or lag the voltage in
each case, that is, does the current reach a maxima before or after the voltage? Also compute
the phase differences φL and φC and describe their dependence on ω. Do the relative phase
differences between VC, VR, and VL depend on ω?

4.7 Projects

Project 4.20. Chemical oscillations
The kinetics of chemical reactions can be modeled by a system of coupled first-order differential
equations. As an example, consider the following reaction

A + 2B → 3B + C, (4.25)

where A,B, and C represent the concentrations of three different types of molecules. The corre-
sponding rate equations for this reaction are

dA

dt
= −kAB2 (4.26a)

dB

dt
= kAB2 (4.26b)

dC

dt
= kAB2. (4.26c)

The rate at which the reaction proceeds is determined by the reaction constant k. The terms on the
right-hand side of (4.26) are positive if the concentration of the molecule increases in (4.25) as it
does for B and C, and negative if the concentration decreases as it does for A. Note that the term
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2B in the reaction (4.25) appears as B2 in the rate equation (4.26). In (4.26) we have assumed
that the reactants are well stirred, so that there are no spatial inhomogeneities. In Section ?? we
will discuss the effects of spatial inhomogeneities due to molecular diffusion.

Most chemical reactions proceed to equilibrium, where the mean concentrations of all molecules
are constant. However, if the concentrations of some molecules are replenished, it is possible to
observe oscillations and chaotic behavior (see Chapter 6). To obtain oscillations, it is essential to
have a series of chemical reactions such that the products of some reactions are the reactants of
others. In the following, we consider a simple set of reactions that can lead to oscillations under
certain conditions (see Lefever and Nicolis):

A → X (4.27a)
B + X → Y + D (4.27b)

2X + Y → 3X (4.27c)
X → C. (4.27d)

If we assume that the reverse reactions are negligible and A and B are held constant by an external
source, the corresponding rate equations are

dX

dt
= A− (B + 1)X + X2Y (4.28a)

dY

dt
= BX −X2Y. (4.28b)

For simplicity, we have chosen the rate constants to be unity.

a. The steady state solution of (4.28) can be found by setting dX/dt and dY/dt equal to zero.
Show that the steady state values for (X, Y ) are (A, B/A).

b. Create a model to solve numerically the rate equations given by (4.28). Your simulation should
input the initial values of X and Y and the fixed concentrations A and B, and plot X versus
Y as the reactions evolve.

c. Systematically vary the initial values of X and Y for given values of A and B. Are their steady
state behaviors independent of the initial conditions?

d. Let the initial value of (X, Y ) equal (A + 0.001, B/A) for several different values of A and B,
that is, choose initial values close to the steady state values. Classify which initial values result
in steady state behavior (stable) and which ones show periodic behavior (unstable). Find the
relation between A and B that separates the two types of behavior.

Project 4.21. Nerve impulses
In 1952 Hodgkin and Huxley developed a model of nerve impulses to understand the nerve mem-
brane potential of a giant squid nerve cell. The equations they developed are known as the
Hodgkin-Huxley equations. The idea is that a membrane can be treated as a capacitor where
CV = q and thus the time rate of change of the membrane potential V is proportional to the
current, dq/dt, flowing through the membrane. This current is due to the pumping of sodium and
potassium ions through the membrane, a leakage current, and an external current stimulus. The
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model is capable of producing single nerve impulses, trains of nerve impulses, and other effects.
The model is described by the following first-order differential equations:

C
dV

dt
= −gKn4(V − VK)− gNam3h(V − VNa)− gL(V − VL) + Iext(t) (4.29a)

dn

dt
= αn(1− n)− βnn (4.29b)

dm

dt
= αm(1−m)− βmm (4.29c)

dh

dt
= αh(1− h)− βhh, (4.29d)

where V is the membrane potential in millivolts (mV), n, m, and h are time dependent functions
that describe the gates that pump ions into or out of the cell, C is the membrane capacitance
per unit area, the gi are the conductances per unit area for potassium, sodium, and the leakage
current, Vi are the equilibrium potentials for each of the currents, and αj and βj are nonlinear
functions of V . We use the notation, n, m, and h for the gate functions because the notation is
universally used in the literature. These gate functions are empirical attempts to describe how the
membrane controls the flow of ions into and out of the nerve cell. Hodgkin and Huxley found the
following empirical forms for αj and βj :

αn = 0.01(V + 10)/[e(1+V/10) − 1] (4.30a)

βn = 0.125 eV/80 (4.30b)

αm = 0.01(V + 25)/[e(2.5+V/10) − 1] (4.30c)

βm = 4 eV/18 (4.30d)

αh = 0.07 eV/20 (4.30e)

βm = 1/[e(3+V/10) + 1]. (4.30f)

The values of the parameters are C = 1.0 µF/cm2, gK = 36 mmho/cm2, gNa = 120mmho/cm2,
gL = 0.3mmho/cm2, VK = 12 mV, VNa = −115mV, and VL = 10.6mV. The unit, mho, represents
ohm−1, and the unit of time is milliseconds (ms). These parameters assume that the resting
potential of the nerve cell is zero; however, we now know that the resting potential is about
−70mV.

We can use the ODE solver to solve (4.29) with the state vector {V, n, m, h, t}; the rates are
given by the right-hand side of (4.29). The following questions ask you to explore the properties
of the model.

a. Create a model to plot n, m, and h as a function of V in the steady state (for which ṅ = ṁ =
ḣ = 0). Describe how these gates are operating.

b. Create a model to simulate the nerve cell membrane potential and plot V (t). You can use a
simple Euler algorithm with a time step of 0.01ms. Describe the behavior of the potential when
the external current is 0.

c. Consider a current that is zero except for a one millisecond interval. Try a current spike
amplitude of 7 µA (that is, the external current equals 7 in our units). Describe the resulting
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nerve impulse, V (t). Is there a threshold value for the current below which there is no large
spike, but only a broad peak?

d. A constant current should produce a train of spikes. Try different amplitudes for the current
and determine if there is a threshold current and how the spacing between spikes depends on
the amplitude of the external current.

e. Consider a situation where there is a steady external current I1 for 20ms and then the current
increases to I2 = I1 +∆I. There are three types of behavior depending on I2 and ∆I. Describe
the behavior for the following four situations (1) I1 = 2.0 µA, ∆I = 1.5 µA; (2) I1 = 2.0 µA,
∆I = 5.0 µA; (3) I1 = 7.0 µA, ∆I = 1.0 µA; and (4) I1 = 7.0 µA, ∆I = 4.0 µA. Try other values
of I1 and ∆I as well. In which cases to you obtain a steady spike train? Which cases produce
a single spike? What other behavior do you find?

f. Once a spike is triggered, it is frequently difficult to trigger another spike. Consider a current
pulse at t = 20ms of 7 µA that lasts for one millisecond. Then give a second current pulse of
the same amplitude and duration at t = 25 ms. What happens? What happens if you add a
third pules at 30 ms?

4.8 Simulations

The following models are implemented in EJS and are downloadable from the OSP Collection in
the comPADRE digital library.

SHO Solver Comparison

The SHO Solver Comparison model solves the simple harmonic oscillator (SHO) differential equa-
tion using various fixed step size solution algorithms. The simulation allows users to change the
step size and uses radio buttons to select the algorithm: Euler, Euler-Richardson, Verlet, and 4th
order Runge-Kutta. The output graph in the main window displays the analytic and numerical
solution and the Data Tool can be used to compare multiple solutions. See Section 4.1.

Traveling Wave

The Traveling Wave model plots A sin(kx+ωt) from x = xmin to x = xmax as a function of t. This
wave function has both spatial and temporal oscillatory motion and the model shows how how to
plot such a time-varying function. See Section 4.1.

Simple Pendulum

The Simple Pendulum model solves the pendulum differential equation using a 4th order Runge-
Kutta algorithm. The model is set up and solved using polar coordinates and the view displays the
pendulum using polar coordinate axes. This model also demonstrates how to draw the pendulum
using as a group of objects and how to rotate the group. See Section 4.2.
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Driven SHO Comparison

The Driven SHO Comparison model displays fifty-one oscillators with different natural frequencies
driven by an external force. The oscillator mass increases from left to right in the multi-oscillator
display and the oscillator in the center has a mass of one. All oscillators are driven with a syn-
chronous external sinusoidal force. The model displays each oscillator as an element of an set and
the evolution workpanel for this model shows how EJS solves arrays of differential equations. See
Section 4.4.

SHO Frequency Response

The SHO Frequency Response model computes a resonance curve by plotting the SHO steady state
amplitude as a function of drive frequency. The ODE solver advances the dynamical variables
for many drive cycles using the Cash-Karp adaptive step algorithm with a solution tolerance of
10−4. The simulation then computes the amplitude of oscillation and increments the frequency in
preparation for the next evolution step. See Section 4.5.

RC Circuit

The RC Circuit model simulates a resistor and a capacitor in series with either a sinusoidal or a
square wave source voltage Vs(t) and plots the time dependence of the voltage drops across the
source, the resistor, and the capacitor. The resistance, capacitance, and source frequency can be
varied by the user. See Section 4.6.

RLC Circuit

The RLC Circuit model simulates a resistor, a capacitor, and an inductor in series with either
a sinusoidal or a square wave source voltage Vs(t and plots the time dependence of the voltage
drops across the source, the resistor, and the capacitor. The resistance, capacitance, and source
frequency can be varied by the user. See Section 4.6.

Truck Drawing

The Truck Drawing model shows how to group multiple elements so that the group can be moved,
resized, and rotated as a single object. See Appendix 4A.

Appendix 4A: Compound Elements

Drawings created using the basic graphical elements provided by EJS can be moved and resized
using the mouse or by linking their position and size properties to model variables. We now describe
how to group multiple elements, such as the pendulum group in Section 4.2, so that the group
behaves as a single object. We also introduce transformations that can be applied to elements to
produce effects such as rotation and shear.
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A Group is an empty EJS drawing element that can host other elements including other
groups. A group has a position and size and accepts a transformation that affects every object
within the group. The Truck Drawing model in this chapter’s source code directory shows how to
create a group. The truck is represented as a rectangular block with two wheels and a windshield.
Each of these four parts is displayed using a 2D shape, . In order to move the truck as a whole we
could move each of these shapes separately, but this would involve computations for the location
of each element. These computations become even more difficult if we were to rotate the truck so
as to simulate motion on an inclination plane. The elegant solution is to create a group.

Load the Truck Drawing model in the chapter’s directory and inspect the view’s tree of
elements (left of Figure 4.10), we see that we have created four Shape2D elements inside a Group2D
element.

Figure 4.10: A cart is created by grouping other drawables elements.

Elements within a group have a position property relative to the group’s position. Inspect the
group and note that its position properties are bound to global variables. Inspect the truck body
and note that this shape and note that its position properties are constant but that it is draggable
and that the Drag Group property is true. Dragging the truck body will affect group properties,
not the truck body properties. The truck body Sensitivity property determines the pixel size of
the draggable spot within the shape. The special value of zero is used to indicate that the hot
spot should fill the entire shape. Run the model and observe that all elements keep their relative
positions and sizes as you drag the truck. Note also that the wheels rotate as you drag the truck.
This rotation is produced using the wheel’s Transform property.

An important property of drawing elements is that of transformations and the most common
2D transformation is a rotation. A Transform property that is set to a double or an integer
expression produces a rotation about the element’s xy-position. The front and rear wheels in
the truck, for example, rotate about the wheel center. This rotation angle is computed using an
expression that depends on the x-position and the size of the wheel.

Affine transformations are linear mappings that preserve the straightness and parallelness of
lines. The most common examples of affine transformations are rotations, translations, scales,
flips, shears, and their combinations. Use the custom editor icon to the right of the Transform
properties field to manipulate elements using these transformations.

The most general 2D transformations are instances of the java.awt.geom.AffineTransform
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class. As specified in the Java documentation, general affine transformations can be represented
by a 3 row by 3 column matrix with an implied last row of [ 0 0 1 ]. This matrix transforms source
coordinates (x,y) into destination coordinates (x’,y’) by multiplying the coordinate vector by the
a matrix: 


x′

y′

1


 =




m00 m01 m02

m10 m11 m12

0 0 1







x
y
1


 =




m00x + m01y + m02

m10x + m11y + m12

1


 .

General transformation objects are created using standard Java syntax and can be used as inspector
Transform properties.

t rans fo rmat ion = new java . awt . geom . Aff ineTransform (m00 , m10 , m01 , m11 , m02 , m12 ) ;

Exercise 4.22. Drawing transformations
Use the transformation properties editor to test the effect of different transformations or

combination of transformations on the truck. When you rotate the truck, what is the turning
point around which it rotates?

Appendix 4B: ODE Arrays

The Driven SHO Comparison model contains two Evolution workpanels showing how to code
arrays of differential equations. The default workpanel expresses a differential equation array
using component syntax.

d x [ i ] / dt = v [ i ]
d v [ i ] / dt = −k*y [ i ] /m[ i ]−b*v [ i ] /m[ i ]+ exte rna lForce ( t )/m[ i ]

Java array components are accessed using integer variables and we often choose the character
”i”. Note that index variables within an ODE workpanel should not be defined in a global variable
table. The index is a local variable that is automatically created by EJS when the ODE workpanel
is converted into Java code. You may, of course, use the index within the rate expression to select
a dynamical variable array element. Simple derivatives such as

dx [ i ] / dt = −g

can be specified without an array index and the expression will be used for all the indexes of the
array.

The second Evolution workpanel uses array (vector) syntax. Disable the component notation
workpanel and enable the array notation workpanel to test this syntax. Because state values, such
as y and v, are stored in arrays we must provide an array or a valid Java expression such as custom
method that returns an array. In the array notation workpanel we write

d x / dt = v
d v / dt = a

The acceleration array is created (instantiated) in the preliminary code pate and the Prelim
code button has an exclamation icon to indicate that preparatory code is available and will be
executed before the ODE rate is evaluated. Click on this button to see how the acceleration vector
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a is initialized. Note that the preliminary code loops over all oscillators to compute the acceleration
for each element v[i]. Although component notation is easier to understand for this simple model,
array notation is convenient when the force computation cannot be carried out in a single Java
expression. We often use preliminary code and array syntax when many vector forces act on each
particle such as in gravitational N-body models.
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