
Chapter 3

Simulating Particle Motion

©2010 by Wolfgang Christian
16 August 2009

Adapted from An Introduction to Computer Simulation Methods by Harvey Gould, Jan Tobochnik,
and Wolfgang Christian

We discuss several numerical methods needed to simulate the motion of particles using Newton’s
laws and introduce the Ordinary Differential Equation (ODE) editor which it possible to select
different numerical algorithms. EJS 3D elements are also introduced to model motion in three
dimensions.

3.1 Numerical Algorithms

To motivate the need for ordinary differential equation (ODE) solvers, we discuss why the simple
Euler algorithm is insufficient. The Euler algorithm assumes that the velocity and acceleration
do not change significantly during the time step ∆t. Thus, to achieve an acceptable numerical
solution, the time step ∆t must be chosen to be sufficiently small. If we make ∆t too small, we
run into several problems. As we do more and more iterations, the round-off error due to the
finite precision of any floating point number will accumulate and eventually the numerical results
will become inaccurate. Also, the greater the number of iterations, the greater the computer time
required for the program to finish. In addition to these problems, the Euler algorithm is unstable
for many systems, which means that the errors accumulate exponentially, and thus the numerical
solution becomes inaccurate very quickly. For these reasons more accurate and stable numerical
algorithms are necessary.

We begin our study of ODE solution algorithms with the simple harmonic oscillator (SHO)
model because its analytic solution is well known and because its constantly varying acceleration
produces numerical errors without the complexities of other problems. Go to the Chapter 3 source
directory and open the SHO Euler model. This model implements a solution to the following two

60

CHAPTER 3. SIMULATING PARTICLE MOTION 61

first-order differential equations for a particle attached to a Hooke’s law spring:

dx

dt
= v (3.1a)

dv

dt
= − k

m
x, (3.1b)

where x is the displacement from equilibrium and k is the spring constant.

Exercise 3.1. Simple harmonic oscillator

a. Examine the SHO Euler model and explain how the implementation of the Euler algorithm in
the evolution method solves Newton’s second law F = ma for the simple harmonic oscillator.

b. The general form of the analytical solution of (3.1) can be expressed as

x(t) = A cos ω0t + B sin ω0t, (3.2)

where ω2
0 = k/m. What is the form of v(t)? Show that (3.2) satisfies (3.1) with A = x(t = 0)

and B = v(t = 0)/ω0. Add a plot of the analytic solution to the model.

c. Test your model with initial displacements of x = 1, x = 2, and x = 4 using a time step
sufficiently small so that you do not observe any difference between the numerical and analytical
solution graphs. Is the time for the ball to reach x = 0 always the same?

To illustrate why we need algorithms other than the simple Euler algorithm

v(t + ∆t) = v(t) + a(t)∆t (3.3a)
y(t + ∆t) = y(t) + v(t)∆t , (3.3b)

we make a very simple change and write

v(t + ∆t) = v(t) + a(t)∆t (3.4a)
x(t + ∆t) = x(t) + v(t + ∆t)∆t, (3.4b)

where a is the acceleration. The only difference between this algorithm and the Euler algorithm
in (3.3), is that the computed velocity at the end of the interval, v(t + ∆t), is used to compute
the new position, x(t + ∆t) in (3.4b). As we will see in more detail in Problem 3.2, this modified
Euler algorithm is significantly better for oscillating systems. We refer to this algorithm as the
Euler-Cromer algorithm.

Problem 3.2. Comparison of Euler algorithms

a. Determine the numerical error in the maximum displacement (the amplitude) of the simple
harmonic oscillator after the particle has evolved for several cycles with ∆t = 0.1. Is the
original Euler algorithm stable for this system? What happens if you run for longer times?
Repeat with ∆t = 0.01. For simplicity, choose units such that k = 1 and m = 1.

b. Modify your model and repeat part (a) using the Euler-Cromer algorithm. Is this algorithm
any better, and if so, in what way?

CHAPTER 3. SIMULATING PARTICLE MOTION 62

c. Modify your model so that it computes the total energy, E = mv2/2 + kx2/2. How well is the
total energy conserved for the two algorithms?

Perhaps it has occurred to you that it would be better to compute the velocity at the middle of
the interval rather than at the beginning or at the end. The Euler-Richardson algorithm is based
on this idea. This algorithm is particularly useful for velocity-dependent forces such as viscous
drag, but does as well as other simple algorithms for forces that do not depend on the velocity.
The algorithm consists of using the Euler algorithm to find the intermediate position ymid and
velocity vmid at a time tmid = t + ∆t/2. We then compute the force, F (ymid, vmid, tmid) and the
acceleration amid at t = tmid. The new position yn+1 and velocity vn+1 at time tn+1 are found
using vmid and amid and the Euler algorithm. We summarize the Euler-Richardson algorithm as:

an = F (yn, vn, tn)/m (3.5a)

vmid = vn +
1
2
an∆t (3.5b)

ymid = yn +
1
2
vn∆t (3.5c)

amid = F (ymid, vmid, t +
1
2
∆t)/m, (3.5d)

and

vn+1 = vn + amid∆t (3.6a)
yn+1 = yn + vmid∆t. (Euler-Richardson algorithm) (3.6b)

Although twice as many computations per time step are done, the Euler-Richardson algorithm
is much faster than the Euler algorithm because we can make the time step larger and still obtain
better accuracy than with either the Euler or Euler-Cromer algorithms. A derivation of the Euler-
Richardson algorithm is given in Appendix 3B.

Exercise 3.3. The Euler-Richardson algorithm

a. Add a second evolution page to the SHO Euler model that implements the Euler-Richardson
algorithm. (Right-click on the tab of the Euler evolution page to create a new evolution code
page. Implement the Euler-Richardson algorithm on this new page and right-click on the original
tab to disable the Euler method code page.) EJS ignores disabled code pages so this way is
convenient for testing code without creating a new model.

b. Compute the SHO energy error after several cycles and compare your results with the Euler
algorithm.

c. Repeat part (b) for a one-dimensional falling particle model. Determine the error in the com-
puted position when the particle hits the ground using ∆t = 0.08, 0.04, 0.02, and 0.01. How do
your results compare with the Euler algorithm? How does the error in the velocity depend on
∆t for each algorithm?

As we gain more experience simulating various physical systems, we will learn that no single
algorithm for solving Newton’s equations of motion numerically is superior under all conditions.

CHAPTER 3. SIMULATING PARTICLE MOTION 63

3.2 ODE editor

Figure 3.1: The simple harmonic oscillator equations of motion in the ODE editor.

Programming a simple numerical ODE solution algorithm is not difficult, but there are many
sophisticated algorithms that require pages of intricate code. These sophisticated numerical tech-
niques can use large step sizes and still produce small errors because they automatically estimate
the error and change (adapt) the step size if the error becomes too large. Designing and imple-
menting such advanced algorithms is a job for experts. To make it easy to use such algorithms,
EJS has a built-in ODE editor that allows the user to enter the differential equations in a natural
form and select the numerical methods described in Table 3.1. We now illustrate how to use the
editor and investigate the properties of fixed step size ODE solvers. The properties of adaptive
step size solvers are studied in the context of gravitational models in Chapter 5.

Many physical models, such as Newton’s second law for particle motion in one dimension, give
rise to a second-order differential equation that takes the form

d2x

dt2
= a(x, v, t) . (3.7)

This equation can be converted to two first-order equations by considering both position x and
and its rate of change (velocity) v to be unknown functions of time:

ẋ = v (3.8a)
v̇ = a(x, v, t) . (3.8b)

The initial position x0 and the initial velocity v0 are advanced by incrementing the independent
variable to obtain x1 and v1, respectively. The process of defining extra variables such as v to
reduce the order of a differential equation (but increase the number of equations) can be extended
to higher-order derivatives as well. Because higher-order differential equations can be converted
into a system of first-order equations, we need only consider general methods of solving systems of

CHAPTER 3. SIMULATING PARTICLE MOTION 64

first-order equations. We refer to quantities, such as position and velocity, that describe the state
of the system and that are evolved using differential equations as dynamical variables.

Additional particles or additional spatial dimensions add additional equations. In general,
a system of particles results in a system of first-order ordinary differential equations with an
independent time t variable and with N dependent dynamical variables that can be written as

ẋ0 = f0(x0, x1, . . . , xN−1, t) (3.9a)
ẋ1 = f1(x0, x1, . . . , xN−1, t) (3.9b)

...
ẋN−1 = fN (x0, x1, . . . , xN−1, t). (3.9c)

This system is said to be autonomous if the functions fi do not explicitly depend on the independent
variable. If we think of the variables xi as components of a state vector x, this system can be
written compactly as

ẋ = f(x, t). (3.10)

The EJS ODE editor solves systems of equations of this type. The variable that is used to take the
derivative can be any independent parameter and is usually the time t. In this case the solution
algorithm produces approximate values of the dynamical variables at discrete time steps ∆t.

Consider again the SHO model. Open the modified SHO ODE Solver model in the Chapter 3
source code directory, navigate to the evolution workpanel, and click on the tabs to examine the two
evolution pages. The explicit evolution page is disabled and the ODE editor shown in Figure 3.1
is enabled. The independent variable and the step size are shown near the top of the ODE editor
page and each dynamical (state) variable and its rate are a row in the editor. A drop-down menu
near the bottom lets us choose the particular ODE numerical (solver) algorithm. Right-click on
the workpanel tabs to enable and disable pages to test algorithms.

Exercise 3.4. The Euler-Richardson algorithm
Verify that the Euler and Euler-Richardson ODE solvers produce the same results as the

explicit implementations used in Exercises 3.2 and 3.3.

We have seen that numerical methods do not produce an exact solution to (3.10) but an
approximation to it. It can be shown that if the independent variable step size ∆t is small enough,
the approximation can be made as accurate as desired. A smaller value of ∆t requires more steps
to advance the evolution of the system through a unit interval. Hence, accuracy comes at the price
of additional computations. Even if we are willing to pay this price, there is a limit to the accuracy
because of the finite precision of computer arithmetic.

The EJS modeling tool is designed to produce real-time simulations that display output after
every evolution step. Although present-day computers can execute a simple evolution algorithm
in a few milliseconds, EJS forces the computer to wait (sleep) until the next frame is scheduled to
appear. Increasing the steps per display (SPD) parameter allows the computer to perform multiple
evolution steps between frames, thereby speeding data collection. The animation will appear jerky
if the computation between frames is lengthy because we require that all computations be complete
before the screen is redrawn.

CHAPTER 3. SIMULATING PARTICLE MOTION 65

Exercise 3.5. Computation time
Run the SHO model with ∆t = 0.1 and with ∆t = 0.01 and plot the change in energy E(t)−E0

as a function of time. By what factor does the error decrease when the step size is decreased by a
factor of ten?

Continue to decrease the time step but increase the SPD parameter by the same factor until
you observe that the simulation runs more slowly. The effective frame rate decreases because of
the increased number of computations and because of the increasing number of data points stored
in the plotting panel curves. You can remove this drawing inefficiency by collecting the fewer data
points using the inspector to set the Skip property of the traces to 10 so that only one out of every
ten points is stored.

Although the Euler algorithm is not used in practice because it produces a poor approximation
unless ∆t is much too small, it is simple and is a good introduction to more sophisticated algorithms.
A straightforward theoretical analysis shows that the total (global) position error produced by
Euler’s method decreases linearly with ∆t when advancing the model from tinital to tfinal. Euler’s
method is therefore termed a method of order one. A numerical method that reduces the total
error quadratically with ∆t is said to be second-order. In general, the order of a method is the
power-law relation between the time step and total error. For example, EJS implements an eighth-
order method developed by Fehlberg that reduces the error by a factor of 256 = 28 when the time
step is reduced by a factor of two.

Problem 3.6. Numerical method order
Run the SHO model using the fourth-order Runge-Kutta ODE solver with various time steps

to determine the order of this solver. Should you use the absolute error, the relative error, or the
error at the maximum displacement to estimate the error? Does the energy error exhibit the same
power dependence on ∆t as the position error? Repeat with Fehlberg’s eight-order method.

In classical (Newtonian) physics, the position and velocity (momentum) space for the dynam-
ical variables is called phase space. The trajectory of a particle or a system of particles through
phase space is completely determined if we know the initial state and an expression for its rate
of change. The simple harmonic oscillator, for example, corresponds to a two-dimensional phase
space.

Problem 3.7. Phase space

a. Modify the SHO model to show its phase space trajectory. How does the phase space trajectory
evolve using the analytic solution? How does it evolve using Euler’s method?

b. An easy to understand and implement numerical algorithm described in Appendix 3B is the
Verlet algorithm. Implement this algorithm for the simple harmonic oscillator and compare the
SHO phase space trajectory for this algorithm to the analytic phase space trajectory.

3.3 Effects of Drag Resistance

In Chapter 2 we modeled a projectile near the surface of the Earth without air friction, including
a plot of position versus time and an animation of a ball moving through the air. In the following

CHAPTER 3. SIMULATING PARTICLE MOTION 66

Table 3.1: Ordinary differential equation solvers are selected using a drop down menu on the
editor page. Solvers are permitted to optimize their internal step size and EJS uses interpolation
to produce solution points at the requested points. The accuracy of the interpolation is guaranteed
to meet or exceed the accuracy of the solver algorithm. See Appendix 5.1A for a discussion of
adaptive solvers.
EJS ODE solvers.
Euler Euler algorithm.
Euler-Richardson Euler-Richardson second-order algorithm

with fixed step size.
Runge-Kutta Runge-Kutta fourth-order algorithm with

fixed step size. A rule of thumb states that
RK4 has an accuracy of approximately
10−5.

Bogacki-Shampine Bogacki-Shampine is a Runge-Kutta-
Fehlberg adaptive step size method of
order three with four stages. It has the
property that the last rate evaluation can
be used as the first rate in the next time
step so that it uses approximately rate
evaluations per step. It uses an embedded
second-order method to implement the
adaptive step size algorithm.

Cash-Karp An adaptive step size algorithm based
on fourth- and fifth-order Runge-Kutta-
Fehlberg methods using coefficients devel-
oped by Cash and Karp. This solver is the
default for a new page of ODEs because it
provides excellent performance and stabil-
ity.

Fehlberg 8 Fehlberg’s eight-order algorithm with fixed
step size.

Fehlberg 8(7) Fehlberg’s eight-order algorithm with
adaptive step size.

Dormand-Prince 5(4) A fifth order adaptive step size algorithm
based using coefficients developed by Dor-
mund and Prince with built-in interpola-
tion.

Dormand-Prince 8(53) An 8th order adaptive method from the
Dormand-Prince family. It is described in
Section II.5, p. 181, of Solving Ordinary
Differential Equations I.Nonstiff Problems
by Hairer, Nrsett, and Wanner.

Radau 5(4) An implicit RK 4th order adaptive method
described in Solving Ordinary Differen-
tial Equations II. Stiff and Differential-
Algebraic Problems by Hairer and Wanner.
This method is recommended for stiff equa-
tions.

CHAPTER 3. SIMULATING PARTICLE MOTION 67

we discuss more realistic models that can be simulated by modifying this basic model. Use the
Falling Particle model in the Chapter 3 source code directory as a starting point for the exercises
and problems in this section.

The analytical solution for free fall near the Earth’s surface, (2.4), is well known and thus
finding a numerical solution is useful only as an introduction to numerical methods. It is not
difficult to think of more realistic models of motion near the Earth’s surface for which the equations
of motion do not have simple analytical solutions. For example, if we take into account the variation
of the Earth’s gravitational field with the distance from the center of the Earth, then the force on
a particle is not constant. According to Newton’s law of gravitation, the force due to the Earth
on a particle of mass m is given by

F =
GMm

(R + y)2
=

GMm

R2(1 + y/R)2
= mg

(
1− 2

y

R
+ · · ·), (3.11)

where y is measured from the Earth’s surface, R is the radius of the Earth, M is the mass of the
Earth, G is the gravitational constant, and g = GM/R2.

Problem 3.8. Position-dependent force
Modify the Falling Particle model to simulate the fall of a particle with the position-dependent
force law (3.11). Assume that a particle is dropped from a height h with zero initial velocity and
compute its impact velocity (speed) when it hits the ground at y = 0. Determine the value of h
for which the impact velocity differs by one percent from its value with a constant acceleration
g = 9.8m/s2. Take R = 6.37 × 106 m. Make sure that the one percent difference is due to the
physics of the force law and not the accuracy of your algorithm.

y

(a)

mg
Fd

(b)

mg

Fd

(c)

Figure 3.2: (a) Coordinate system with y measured positive upward from the ground. (b) The
force diagram for downward motion. (c) The force diagram for upward motion.

For particles near the Earth’s surface, a more important modification is to include the drag
force due to air resistance. The direction of the drag force Fd(v) is opposite to the velocity of the
particle (see Figure 3.2). For a falling body Fd(v) is upward as shown in Figure 3.2(b). Hence, the
total force F on the falling body can be expressed as

F = −mg + Fd. (3.12)

CHAPTER 3. SIMULATING PARTICLE MOTION 68

The velocity dependence of Fd(v) is known theoretically in the limit of very low speeds for
small objects. In general, it is necessary to determine the velocity dependence of Fd(v) empirically
over a limited range of velocities. One way to obtain the form of Fd(v) is to measure y as a
function of t and then compute v(t) by calculating the numerical derivative of y(t). Similarly we
can use v(t) to compute a(t) numerically. From this information it is possible in principle to find
the acceleration as a function of v and to extract Fd(v) from (3.12). However, this procedure
introduces errors (see Problem 3.9a) because the accuracy of the derivatives will be less than the
accuracy of the measured position. An alternative is to reverse the procedure, that is, assume an
explicit form for the v dependence of Fd(v), and use it to solve for y(t). If the calculated values of
y(t) are consistent with the experimental values of y(t), then the assumed v dependence of Fd(v)
is justified empirically.

The two common assumed forms of the velocity dependence of Fd(v) are

F1,d(v) = C1v, (3.13a)

and
F2,d(v) = C2v

2, (3.13b)

where the parameters C1 and C2 depend on the properties of the medium and the shape of the
object. In general, (3.13a) and (3.13b) are useful phenomenological expressions that yield approx-
imate results for Fd(v) over a limited range of v.

Because Fd(v) increases as v increases, there is a limiting or terminal velocity (speed) at which
the net force on a falling object is zero. This terminal speed can be found from (3.12) and (3.13)
by setting Fd = mg and is given by

v1,t =
mg

C1
, (linear drag) (3.14a)

v2,t =
(mg

C2

)1/2
, (quadratic drag) (3.14b)

for the linear and quadratic cases, respectively. It often is convenient to express velocities in terms
of the terminal velocity. We can use (3.13) and (3.14) to write Fd in the linear and quadratic cases
as

F1,d = C1v1,t

(v

v1,t

)
= mg

v

v1,t
, (3.15a)

F2,d = C2v2,t
2
(v

v2,t

)2

= mg
(v

v2,t

)2

. (3.15b)

Hence, we can write the net force (per unit mass) on a falling object in the convenient forms

F1(v)/m = −g
(
1− v

v1,t

)
, (3.16a)

F2(v)/m = −g
(
1− v2

v2,t
2

)
. (3.16b)

To determine if the effects of air resistance are important during the fall of ordinary objects,
consider the fall of a pebble of mass m = 10−2 kg. To a good approximation, the drag force

CHAPTER 3. SIMULATING PARTICLE MOTION 69

t (s) position (m) t (s) position (m) t (s) position (m)
0.2055 0.4188 0.4280 0.3609 0.6498 0.2497
0.2302 0.4164 0.4526 0.3505 0.6744 0.2337
0.2550 0.4128 0.4773 0.3400 0.6990 0.2175
0.2797 0.4082 0.5020 0.3297 0.7236 0.2008
0.3045 0.4026 0.5266 0.3181 0.7482 0.1846
0.3292 0.3958 0.5513 0.3051 0.7728 0.1696
0.3539 0.3878 0.5759 0.2913 0.7974 0.1566
0.3786 0.3802 0.6005 0.2788 0.8220 0.1393
0.4033 0.3708 0.6252 0.2667 0.8466 0.1263

Table 3.2: Results for the vertical fall of a coffee filter. Note that the initial time is not zero. The
time difference is ≈ 0.0247. This data also is available in the falling.txt file in the Chapter 3
source code directory.

is proportional to v2. For a spherical pebble of radius 0.01 m, C2 is found empirically to be
approximately 10−2 kg/m. From (3.14b) we find the terminal velocity to be about 30m/s. Because
this speed would be achieved by a freely falling body in a vertical fall of approximately 50m in a
time of about 3 s, we expect that the effects of air resistance would be appreciable for comparable
times and distances.

Data stored in simple text files can be read into Data Tool for analysis. The Falling Particle
model in the Chapter 3 source code directory has a tool button and we use it in Problem 3.9 to
read the data in Table 3.2 in order to compare our computational results to empirical data.

Problem 3.9. The fall of a coffee filter

a. Determine the terminal velocity from the empirical data given in Table 3.2. Run the Falling
Particle model, display the Data Tool, and open the falling.txt file in the tool using the
[File] → [Open] menu item. Select the fit option in the tool and fit the last ten table rows to a
straight line. Note that you can select rows for the fit by dragging within the table. What is
the falling coffee filter’s terminal velocity?

b. Use the empirical data in the data file to create a new column showing the coffee filter velocity
v(t) using the central difference approximation given by

v(t) ≈ y(t + ∆t)− y(t−∆t)
2∆t

. (central difference approximation) (3.17)

Show that if we write the acceleration as a(t) ≈ [v(t + ∆t) − v(t)]/∆t and use the backward
difference approximation for the velocity,

v(t) ≈ y(t)− y(t−∆t)
∆t

, (backward difference approximation) (3.18)

we can express the acceleration as

a(t) ≈ y(t + ∆t)− 2y(t) + y(t−∆t)
(∆t)2

. (3.19)

Use (3.19) to create a data tool column that shows the acceleration.

CHAPTER 3. SIMULATING PARTICLE MOTION 70

Figure 3.3: A falling coffee filter does not fall with constant acceleration due to the effects of air
resistance. The motion sensor below the filter is connected to a computer, which records position
data and stores it in a text file.

c. Use your approximate results for v(t) and a(t) to plot a as a function of v and, if possible,
determine the nature of the velocity dependence of a. Discuss the accuracy of your results for
the acceleration.

d. Add a quadratic drag resistance to the Falling Ball simulation and set the parameters and
the initial conditions to match the empirical data. Choose the terminal velocity as an input
parameter, and take as your first guess for the terminal velocity the value you found in part (a).
Make sure that your computed results for the height of the particle, do not depend on ∆t to
the necessary accuracy. Compare your plot of the computed values of y(t) for different choices
of the terminal velocity with the empirical values of y(t).

e. Repeat parts (d) assuming linear drag resistance. What are the qualitative differences between
the two computed forms of y(t) for the same terminal velocity?

f. Visually determine which form of the drag force yields the best overall fit to the data. If the
fit is not perfect, what is your criteria for which fit is better? Is it better to match your results
to the experimental data at early times or at later times? Or did you adopt another criterion?
What can you conclude about the velocity-dependence of the drag resistance on a coffee filter?

Problem 3.10. Effect of air resistance on the ascent and descent of a pebble

a. Verify the claim made in Section 3.3 that the effects of air resistance on a falling pebble can
be appreciable. Compute the speed at which a pebble reaches the ground if it is dropped from
rest at a height of 50 m. Compare this speed to that of a freely falling object under the same

CHAPTER 3. SIMULATING PARTICLE MOTION 71

conditions. Assume that the drag force is proportional to v2 and that the terminal velocity is
30m/s.

b. Suppose a pebble is thrown vertically upward with an initial velocity v0. In the absence of air
resistance, we know that the maximum height reached by the pebble is v2

0/2g, its velocity upon
return to the Earth equals v0, the time of ascent equals the time of descent, and the total time
in the air is 2v0/g. Before doing a simulation, give a simple qualitative explanation of how
you think these quantities will be affected by air resistance. In particular, how will the time of
ascent compare with the time of descent?

c. Do a simulation to determine if your qualitative answers in part (b) are correct. Assume that
the drag force is proportional to v2. Choose the coordinate system shown in Figure 3.2 with y
positive upward. What is the net force for v > 0 and v < 0? We can characterize the magnitude
of the drag force by a terminal velocity even if the motion of the pebble is upward and even if
the pebble never attains this velocity. Choose the terminal velocity vt = 30 m/s, corresponding
to a drag coefficient of C2 ≈ 0.01089. It is a good idea to choose an initial velocity that allows
the pebble to remain in the air for a time sufficiently long so that the effect of the drag force is
appreciable. A reasonable choice is v(t = 0) = 50m/s. You might find it convenient to express
the drag force in the form Fd ∝ −v∗Math.abs(v).

There a many ways to determine the maximum maximum height of the pebble in 3.10. We can
measure the maximum value of the y(t) curve or the zero crossing of the v(t) curve. We can also
determine the maximum height by using an evolution page to save the particle’s position before
the ODE step, performing the ODE step, and using a third evolution page to print the maximum
height when the velocity changes sign

i f (v*vold < 0) {
p r i n t l n ("maximum height = " + y) ;

}

where v = vn+1 and vold = vn. Multiple Evolution pages are evaluated in left to right in the order
of the workpanel tabs. This technique is not very accurate unless the step size is small because
the maximum height will almost never occur at an evolution step.

EJS allows the user to stop an ODE simulation at times other than at an integer multiple
of the step size using an ODE event. An ODE event is triggered when a function h(t) passes
through zero as the dynamical system evolves. The solver checks the function at the end of every
step. When a zero crossing is detected, the solver discards the result and recomputes the evolution
with smaller intermediate steps until it finds the exact intermediate value that produced the event.
The event then triggers an action, such as printing the particle height, using dynamical variables
evaluated at the intermediate value.

EJS supports three event types. A zero crossing event occurs when the function changes
sign and a positive crossing event occurs when the function goes from positive to negative. A state
event occurs when the error function goes from positive to negative, but unlike the positive crossing
event, the event action must change the dynamical state so that the function h(t) is positive. State
event actions are slightly harder to implement and we defer their discussion until Chapter 6. Zero
crossing and positive crossing event types are easy to use because they only trigger once when the
crossing occurs. We provide a brief introduction to zero-crossing events in Exercise 3.11.

CHAPTER 3. SIMULATING PARTICLE MOTION 72

Figure 3.4: An ODE event is triggered when a function changes sign. The top section computes
and returns the value of the function. The bottom section contains the action that the event
performs.

Exercise 3.11. ODE zero crossing event

a. The Falling Particle model in the Chapter 3 source code directory has a disabled zero crossing
event that is triggered when the velocity is zero. Navigate to the Evolution workpanel for this
model, click on the event button, and right click on the tab near the top of the event editor
to enable this event. Run the model and show that the event occurs (to within the specified
tolerance) at the particle’s maximum height regardless of the time step.

b. Add a second event that pauses the simulation when the particle hits the ground.

c. Add an event to print the maximum height to the model that you developed in Problem 3.10.

3.4 Two-Dimensional Trajectories

You are probably familiar with two-dimensional trajectory problems in the absence of air resistance.
For example, if a ball is thrown in the air with an initial velocity v0 at an angle θ0 with respect to
the ground, how far will the ball travel in the horizontal direction, and what is its maximum height
and time of flight? Suppose that a ball is released at a nonzero height h above the ground. What
is the launch angle for the maximum range? Are your answers still applicable if air resistance is
taken into account? We consider these and similar questions in the following.

Consider an object of mass m whose initial velocity v0 is directed at an angle θ0 above the
horizontal (see Figure 3.53.5(a)). The particle is subjected to gravitational and drag forces of
magnitude mg and Fd; the direction of the drag force is opposite to v (see Figure 3.53.5(b)).
Newton’s equations of motion for the x and y components of the motion can be written as

m
dvx

dt
= −Fd cos θ (3.20a)

m
dvy

dt
= −mg − Fd sin θ. (3.20b)

CHAPTER 3. SIMULATING PARTICLE MOTION 73

θ0

y

x

h

(a)

θ

Fd

mg

v

(b)

Figure 3.5: (a) A ball is thrown from a height h at an launch angle θ0 measured with respect to
the horizontal. The initial velocity is v0. (b) The gravitational and drag forces on a particle.

For example, let us maximize the range of a round steel ball of radius 4 cm. A reasonable assump-
tion for a steel ball of this size and typical speed is that Fd = C2v

2. Because vx = v cos θ and
vy = v sin θ, we can rewrite (3.20) as

m
dvx

dt
= −C2vvx (3.21a)

m
dvy

dt
= −mg − C2vvy. (3.21b)

Note that −C2vvx and −C2vvy are the x and y components of the drag force −C2v
2. Because

(3.21a) and (3.21b) for the change in vx and vy involve the square of the velocity, v2 = vx
2 + vy

2,
we cannot calculate the vertical motion of a falling body without reference to the horizontal
component, that is, the motion in the x and y direction is coupled.

Problem 3.12. Trajectory of a steel ball

a. The Falling 2D Particle model in the Chapter 3 source code directory models the two-dimensional
trajectory of a ball moving in air without air friction. Add an EJS zero crossing event to pause
the simulation when the projectile hits the ground and compare your computed range with the
exact results. For example, assume that a ball is thrown from ground level at an angle θ0 above
the horizontal with an initial velocity of v0 = 15m/s. Vary θ0 and show that the maximum
range occurs at θ0 = θmax = 45◦. What is Rmax, the maximum range, at this angle? Compare
your numerical result to the analytical result Rmax = v2

0/g.

b. Suppose that a steel ball is thrown from a height h at an angle θ0 above the horizontal with the
same initial speed as in part (a). If you neglect air resistance, do you expect θmax to be larger
or smaller than 45◦? What is θmax for h = 2 m? By what percent is the range R changed if θ
is varied by 2% from θmax?

c. Consider the effects of air resistance on the range and optimum angle of a steel ball. For a
ball of mass 7 kg and cross-sectional area 0.01 m2, the parameter C2 ≈ 0.1. What are the units
of C2? It is convenient to exaggerate the effects of air resistance so that you can more easily
determine the qualitative nature of the effects. Hence, compute the optimum angle for h = 2 m,

CHAPTER 3. SIMULATING PARTICLE MOTION 74

v0 = 30 m/s, and C2/m = 0.1, and compare your answer to the value found in part (b). Is R
more or less sensitive to changes in θ0 from θmax than in part (b)? Determine the optimum
launch angle and the corresponding range for the more realistic value of C2 = 0.1. A detailed
discussion of the maximum range of the ball has been given by Lichtenberg and Wills.

Problem 3.13. Comparing the motion of two objects
Consider the motion of two identical objects that both start from a height h. One object is dropped
vertically from rest and the other is thrown with a horizontal velocity v0. Which object reaches
the ground first?

a. Give reasons for your answer assuming that air resistance can be neglected.

b. Assume that air resistance cannot be neglected and that the drag force is proportional to v2.
Give reasons for your anticipated answer for this case. Then perform numerical simulations
using, for example, C2/m = 0.1, h = 10m, and v0 = 30 m/s. Are your qualitative results
consistent with your anticipated answer? If they are not, the source of the discrepancy might
be an error in your program. Or the discrepancy might be due to your failure to anticipate the
effects of the coupling between the vertical and horizontal motion.

c. Suppose that the drag force is proportional to v rather than to v2. Is your anticipated answer
similar to that in part (b)? Do a numerical simulation to test your intuition.

3.5 Decay processes

The power of mathematics when applied to physics comes in part from the fact that seemingly
unrelated problems frequently have the same mathematical formulation. Hence, if we can solve
one problem, we can solve other problems that might appear to be unrelated. For example, the
growth of bacteria, the cooling of a cup of hot water, the charging of a capacitor in a RC circuit,
and nuclear decay all can be formulated in terms of equivalent differential equations.

In 1958 two Cornell University engineering students presented a report title “The Mechanisms
of Cooling Hot Quiescent Liquids” in which they studied the effect of adding cream to a cup of hot
coffee. Because typical brewing temperature for coffee is 85C (185F) and drinking temperature
is 62C (143F), they studied the effect of adding cream when the coffee is served or adding it just
before it is consumed. This is not a trivial problem because a hot body exchanges heat with
its surroundings through the simultaneous processes of conduction, convection, evaporation, and
radiation. Newton argued that because the thermal energy is proportional to the volume and
the energy loss is proportional to the exposed area, the time of cooling is proportional to the
diameter. Larger objects therefore cool more slowly. Laplace, Helmholtz, and Kelvin extended
Newton’s model by considering gravitational energy and radiation to estimate the age of the Sun
to be well over 20 million years. Although the discovery of nuclear fusion greatly increased this
age estimate, the balance between cooling and thermonuclear fusion is of fundamental importance
in stellar models. Today we use advanced heating, cooling, and energy transport models to debate
the impact of global warming. Considering in detail the processes in these climate change models
requires advanced supercomputer-based algorithms but we wish to lay the groundwork for such

CHAPTER 3. SIMULATING PARTICLE MOTION 75

studies and we start by studying the cooling-coffee problem. We create a simple model of how
objects cool and use this simulation with different conditions to predict the final temperature.

Problem 3.14. Cooling of a cup of coffee
If the temperature difference between the water and its surroundings is not too large, the rate of
change of the temperature of the water may be assumed to be proportional to the temperature
difference. We can formulate this statement more precisely in terms of a differential equation:

dT

dt
= −r (T − Ts), (3.22)

where T is the temperature of the water, Ts is the temperature of its surroundings, and r is
the cooling constant. The minus sign in (3.22) implies that if T > Ts, the temperature of the
water will decrease with time. The value of the cooling constant r depends on the heat transfer
mechanism, the contact area with the surroundings, and the thermal properties of the water. The
relation (3.22) is sometimes known as Newton’s law of cooling, even though the relation is only
approximate, and Newton did not express the rate of cooling in this form.

a. Create a model that computes the numerical solution of (3.22). Test your program by choosing
the initial temperature T0 = 100◦C, Ts = 0◦C, r = 1, and ∆t = 0.1.

b. Model the cooling of a cup of coffee by choosing r = 0.03. What are the units of r? Plot
the temperature T as a function of the time using T0 = 85 ◦C and Ts = 17 ◦C. Choose an
appropriate numerical algorithm making sure that your value of ∆t is sufficiently small so that
it does not affect your results. What is the appropriate unit of time in this case?

c. Suppose that the initial temperature of a cup of coffee is 85◦C, but the coffee can be sipped
comfortably only when its temperature is ≤ 62◦C. Assume that the addition of one serving of
cream cools the coffee by 5◦C and add a button to the model that adds a serving of cream to
coffee when pressed. If you are in a hurry and want to wait the shortest possible time, should
the cream be added first and the coffee be allowed to cool, or should you wait until the coffee has
cooled somewhat before adding the cream? Use your program to “simulate” these two cases.
Choose r = 0.03 and Ts = 17◦C. What is the appropriate unit of time in this case? Assume
that the value of r does not change when the cream is added.

Consider a large number of radioactive nuclei. Although the number of nuclei is discrete, we
often may treat this number as a continuous variable because the number of nuclei is very large.
In this case the law of radioactive decay is that the rate of decay is proportional to the number of
nuclei. Thus we can write

dN

dt
= −λN, (3.23)

where N is the number of nuclei and λ is the decay constant. Of course, we do not need to use a
computer to solve this decay equation, and the analytical solution is

N(t) = N0e
−λt, (3.24)

where N0 is the initial number of particles. The quantity λ in (3.23) or (3.24) has dimensions of
inverse time.

CHAPTER 3. SIMULATING PARTICLE MOTION 76

Problem 3.15. Single nuclear species decay

a. Create a model that solves and plots the nuclear decay problem. Input the decay constant,
λ, from the control window. For λ = 1 and ∆t = 0.01, compute the difference between the
analytical result and the result of the Euler algorithm for N(t)/N(0) at t = 1 and t = 2. Assume
that time is measured in seconds. Repeat with 4th order Runge-Kutta algorithm and use this
algorithm for the remainder of this problem.

b. A common time unit for radioactive decay is the half-life, T1/2, the time it takes for one-half
of the original nuclei to decay. Another natural time scale is the time, τ , it takes for 1/e of
the original nuclei to decay. Use your modified program to verify that T1/2 = ln 2/λ. How long
does it take for 1/e of the original nuclei to decay? How is T1/2 related to τ?

c. Because it is awkward to treat very large or very small numbers on a computer, it is convenient to
choose units so that the computed values of the variables are not too far from unity. Determine
the decay constant λ in units of s−1 for 238U → 234Th if the half-life is 4.5 × 109 years. What
units and time step would be appropriate for the numerical solution of (3.23)? How would these
values change if the particle being modeled were a muon with a half-life of 2.2× 10−6 s?

d. Modify your model so that the time t is expressed in terms of the half-life. That is, at t = 1 one
half of the particles would have decayed and at t = 2, one quarter of the particles would have
decayed. Use your program to determine the time for 1000 atoms of 238U to decay to 20% of
their original number. What would be the corresponding time for muons?

If the number of radioactive nuclei is larger, the rate of change of N can be approximated by a
differential equation. Nuclei are, however, discrete and the continuous model fails when N is small.
The probability of one nucleus decaying in a time interval ∆t is

P (∆t) = 1− eλ∆t . (3.25)

Note that this single particle decay probability is approximately λ∆t if the exponent is small. An
evolution algorithm that decreases the current number of particles n based on the number of decay
events is implemented as:

int count = 0 ; // counter f o r number o f decays even t s
double prob=1−Math . exp(−lambda*dt) ; // p r o b a b i l i t y o f a s i n g l e decay event
for (int i = 0 ; i < n ; i++) { // loop over every p a r t i c l e

i f (Math . random()<prob) count++; // decay depends on random number
}
n−=count ; // reduce n by decay counter

Problem 3.16. Random decay
Compare a continuous decay model based on (3.24) to a stochastic decay model based on

(3.25). Use a separate Evolution page for each algorithm. Run the model with N0 = 1000 and
λ = 0.5. When do the two algorithms agree and when do you notice a difference between two
algorithms?

Multiple nuclear decays produce systems of first-order differential equations. Problem 3.17
asks you to model such a system using the techniques similar to those that we have already used.

CHAPTER 3. SIMULATING PARTICLE MOTION 77

207 208 209 210 211

mass number

82

83

84

85

86

nu
cl

ea
r

ch
ar

ge

Pb

Bi

Po Po

At

Rn

5.7 hr

30 yr

74%
15 hr

7.2 hr

0.52 s

15 hr

26%

Figure 3.6: The decay scheme of 211Rn. Note that 211Rn decays via two branches, and the final
product is the stable isotope 207Pb. All vertical transitions are by electron capture, and all diagonal
transitions are by alpha decay. The times represent half-lives.

Problem 3.17. Multiple nuclear decays

a. 76Kr decays to 76Br via electron capture with a half-life of 14.8 h, and 76Br decays to 76Se via
electron capture and positron emission with a half-life of 16.1 h. In this case there are two half-
lives, and it is convenient to measure time in units of the smallest half-life. Write a program
to compute the time dependence of the amount of 76Kr and 76Se over an interval of one week.
Assume that the sample initially contains 1 gm of pure 76Kr.

b. 28Mn decays via beta emission to 28Al with a half-life of 21 h, and 28Al decays by positron
emission to 28Si with a half-life of 2.31 min. If we were to use minutes as the unit of time, our
program would have to do many iterations before we would see a significant decay of the 28Mn.
What simplifying assumption can you make to speed up the computation?

c. 211Rn decays via two branches as shown in Figure 3.6. Make any necessary approximations and
compute the amount of each isotope as a function of time, assuming that the sample initially
consists of 1µg of 211Rn.

CHAPTER 3. SIMULATING PARTICLE MOTION 78

3.6 Visualizing Three-Dimensional Motion

Figure 3.7: The falling 3D Particle model shows a three-dimensional view of a falling ball.

The world in which we live is three-dimensional (3D), and it is fun and sometimes necessary
to visualize phenomena in three dimensions. Because we want a three-dimensional visualization
framework designed for physics simulations, we have developed a small 3D library that does not
require any add-on packages. A new EJS library that relies on the Sun Microsystems Java3D
package is under development and will be released with EJS version 4.3. This new library will
support hardware accelerated rendering of polygons, lighting and shading, and other high-end 3D
visualization techniques.

A 3D view is created by adding a 3D Drawing Panel to a frame and then adding 3D
Elements from the 3D Drawables palette to the drawing panel. The Falling 3D Particle model in
the Chapter 3 source code directory simulates the same physics as the 2D model but with a 3D
View. The ball falls with constant acceleration g = −9.8 m/s2 in the z direction. Click-dragging on
the ball changes its height but leaves its velocity unchanged. The reset button stops the animation
and sets the initial conditions to y = 1.8 and vy = 0.

Exercise 3.18. Three-dimensional models

a. Load and inspect the Falling 3D Particle model and describe the differences between this model
and the 2D model.

b. Run the model and test the navigation controls.

� Left-button click-dragging on the particle changes its position.

� Left-button click-dragging on an empty regions rotates the view.

� Left-button shift-click-dragging zooms in and out.

� Left-button control-click-dragging translates (pans) the view.

CHAPTER 3. SIMULATING PARTICLE MOTION 79

� Left-button alt-click-dragging displays a 3D cursor on the scene (if the panel is Enabled).

c. Add an initial x-velocity component to the model and add a 3D trail to show the trajectory in
the view. Model the trajectory as the ball bounces past the end of the table top.

Although the 3D drawing panel is designed for three-dimensional visualizations, it also can
show two-dimensional projections as shown in Figure 3.7. The model uses an integer variable that
is set by radio buttons and is bound to the Projection property in the 3D panel to select the
projection. The 3D panel’s Projection property custom editor shows all five projections ordered
according to their integer selector.

We will require only a small subset of the 3D elements to create the three-dimensional visu-
alizations in this book and will introduce the necessary objects as needed. Readers may wish to
run the 3D demonstration programs on the EJS information Wiki for an overview of additional
3D drawing capabilities.

ω

v

Fm

Figure 3.8: The Magnus force on a spinning ball pushes a ball with topspin down.

Of particular interest to baseball fans is the curve of balls in flight due to their rotation. This
force was first investigated in 1850 by G. Magnus and the curvature of the trajectories of spinning
objects is now known as the Magnus effect . It can be explained qualitatively by observing that
the speed of the ball’s surface relative to the air is different on opposite edges of the ball. If the
drag force has the form Fdrag ∼ v2, then the unbalanced force due to the difference in the velocity
on opposite sides of the ball due to its rotation is given by

Fmagnus ∼ v∆v. (3.26)

We can express the velocity difference in terms of the ball’s angular velocity and radius and write

Fmagnus ∼ vrω. (3.27)

The direction of the Magnus force is perpendicular to both the velocity and the rotation axis.
For example, if we observe a ball moving to the right and rotating clockwise (that is, with topspin),
then the velocity of the ball’s surface relative to the air at the top, v+ωr, is higher than the velocity
at the bottom, v − ωr. Because the larger velocity will produce a larger force, the Magnus effect
will contribute a force in the downward direction. These considerations suggest that the Magnus
force can be expressed as a vector product:

Fmagnus/m = CM (ω × v), (3.28)

CHAPTER 3. SIMULATING PARTICLE MOTION 80

where m is the mass of the ball. The constant, CM , depends on the radius of the ball, the viscosity
of air, and other factors such as the orientation of the stitching. We will assume that the ball is
rotating fast enough so that it can be modeled using an average value. (If the ball does not rotate,
the pitcher has thrown a knuckleball.) The total force on the baseball is given by

F/m = g − CD|v|v + CM (ω × v). (3.29)

Equation (3.29) leads to the following rates for the velocity components:

dvx

dt
= −CDvvx + CM (ωyvz − ωzvy) (3.30a)

dvy

dt
= −CDvvy + CM (ωzvx − ωxvz) (3.30b)

dvz

dt
= −CDvvz + CM (ωxvy − ωyvx)− g, (3.30c)

where we will assume that ω is a constant. The rate for each of the three position variables is the
corresponding velocity. Typical parameter values for a 149 gram baseball are CD = 6× 10−3 and
CM = 4× 10−4. See the book by Adair for a more complete discussion.

Problem 3.19. Curveballs
Model a spinning baseball using (3.30). Assume that the initial ball is released at z = 1.8m

above and x = 18m from home plate. Set the initial angle above the horizontal, the initial speed,
and the spin using fields in the user interface. Plot the vertical and horizontal deflection of the
baseball as it travels toward home plate.

a. First set the drag and Magnus forces to zero and test your program using analytical results for
a 40 m/s fast ball. What initial angle is required for the pitch to pass over home plate at a
height of 1.5 m?

b. Add the drag force with CD = 6 × 10−3. What initial angle is required for this pitch to be
a strike assuming that the other initial conditions are unchanged? Plot the vertical deflection
with and without drag for comparison.

c. Add topspin to the pitch using a typical spin of ωy = 200 rad/s and CM = 4× 10−4. How much
does topspin change the height of the ball as it passes over the plate? What about backspin?

d. How much does a 35 m/s curve ball deflect if it is pitched with an initial spin of 200 rad/s?

e. Add a 3D visualization of the baseball’s trajectory to using a 3D trail to display the path of
the ball.

Coupled three-dimensional equations of motion occur in electrodynamics when a charged
particle travels through electric and magnetic fields. The equation of motion can be written in
vector form as:

mv̇ = qE + q(v ×B), (3.31)

where m is the mass of the particle, q is the charge, and E and B represent the electric and
magnetic fields, respectively. For the special case of a constant magnetic field, the trajectory of a

CHAPTER 3. SIMULATING PARTICLE MOTION 81

charged particle is a spiral along the field lines with a cyclotron orbit whose period of revolution
is 2πm/qB. The addition of an electric field changes this motion dramatically.

The rates for the velocity components of a charged particle using units such that m = q = 1
are

dvx

dt
= Ex + vyBz − vzBy (3.32a)

dvy

dt
= Ey + vzBx − vxBz (3.32b)

dvz

dt
= Ez + vxBy − vyBx. (3.32c)

The rate for each of the three position variables is again the corresponding velocity.

Problem 3.20. Motion in electric and magnetic fields

a. Model the two-dimensional motion of a charged particle in a constant electric and magnetic
field with the magnetic field in the ẑ direction and the electric field in the ŷ direction. Assume
that the initial velocity is in the x-y plane.

b. Why does the trajectory in part (a) remain in the x-y plane?

c. In what direction does the charge particle drift if there is an electric field in the x direction and
a magnetic field in the z direction if it starts at rest from the origin? What type of curve does
the charged particle follow?

d. Create a three-dimensional simulation of the trajectory of a particle in constant electric and
magnetic fields. Verify that a charged particle undergoes spiral motion in a constant magnetic
field and zero electric field. Predict the trajectory if an electric field is added and compare the
results of the simulation to your prediction. Consider electric fields that are parallel to and
perpendicular to the magnetic field.

Although the trajectory of a charged particle in constant electric and magnetic fields can be
solved analytically, the trajectories in the presence of dipole fields cannot. A magnetic dipole with
dipole moment p = |p|p̂ produces the following magnetic field:

B =
µ0m

4πε0r3
[3p̂ · r̂)r̂ − p̂]. (3.33)

(The distinction between the symbol p for the dipole moment and p for momentum should be clear
from the context.)

Problem 3.21. Motion in a magnetic dipole field
Model the Earth’s Van Allen radiation belt using the following formula for the dipole field:

B = B0(
RE

R
)3[3p̂ · r̂)r̂ − p̂], (3.34)

where RE is the radius of the Earth and the magnetic field at the equator is B0 = 3.5× 10−5 tesla.
Note that a 1 MeV electron at 2 Earth radii travels in very tight spirals with a cyclotron period
that is much smaller than the travel time between the north and south poles. Better visual results
can be obtained by raising the electron energies by a factor of ∼ 1000. Use classical dynamics, but
include the relativistic dependence of the mass on the particle speed.

CHAPTER 3. SIMULATING PARTICLE MOTION 82

3.7 Levels of Simulation

So far we have considered models in which the microscopic complexity of the system of interest has
been simplified considerably. Consider for example, the motion of a pebble falling through the air.
First we reduced the complexity by representing the pebble as a particle with no internal structure.
Then we reduced the number of degrees of freedom even more by representing the collisions of the
pebble with the many molecules in the air by a velocity-dependent friction term. The resultant
phenomenological model is a fairly accurate representation of realistic physical systems. However,
what we gain in simplicity, we lose in range of applicability.

In a more detailed model, the individual physical processes would be represented microscop-
ically. For example, we could imagine doing a simulation in which the effects of the air are
represented by a fluid of particles that collide with one another and with the falling body. How
accurately do we need to represent the potential energy of interaction between the fluid particles?
Clearly the level of detail that is needed depends on the accuracy of the corresponding experimen-
tal data and the type of information in which we are interested. For example, we do not need to
take into account the influence of the moon on a pebble falling near the Earth’s surface. And the
level of detail that we can simulate depends in part on the available computer resources.

The terms simulation and modeling are frequently used interchangeably. In this text, a model
is a conceptual representation of a physical system and its properties and modeling is the process
whereby we construct this representation. Computer modeling requires (1) a description and
an analysis of the problem, (2) the identification of the variables and the algorithms, (3) the
implementation on a specific hardware-software platform, (4) the execution of the implementation
and analysis of the results, (5) refinement and generalization, and (6) the presentation of results.
A simulation is an implementation of a model that allows us to test the model under different
conditions with the objective of learning about the model’s behavior. The applicability of the
results of the simulation to those of the real (physical) system depends on how well the model
describes reality.

3.8 Simulations

The following models are implemented in EJS and are downloadable from the OSP Collection in
the comPADRE digital library.

SHO Euler

The SHO Euler model solves the first-order differential equations for a particle attached to a
Hooke’s law spring using Euler’s method. Euler’s method is implemented explicitly on the Evolu-
tion workpanel in order to teach Java syntax. We use Euler’s method to study the simple harmonic
oscillator (SHO) because its analytic solution is well known and because its constantly varying ac-
celeration produces easy to detect numerical errors without multi-variable force expressions. See
Section 3.1.

CHAPTER 3. SIMULATING PARTICLE MOTION 83

SHO ODE Solver

The SHO ODE Solver model demonstrates how to use the EJS ODE editor to solve a differential
equation. Examine this model in EJS and right-click on the Evolution workpanel tabs to enable
and disable pages to test algorithms. The explicit evolution page is disabled and the ODE editor
page is enabled in the default configuration. See Section 3.2.

Falling Particle

The Falling Particle model shows a falling ball and plots its position as a function of time. The
ball falls with constant acceleration and click-dragging on the ball changes its height but leaves its
velocity unchanged. The reset button stops the animation and sets the initial conditions. Users
are encouraged to analyze the position data using the Data Tool. This model is a starting point
for the exercises and problems in Section 3.3. Users can, for example, enable the zero crossing
event in the Evolution workpanel to compute the maximum height of the particle.

Falling 3D Particle

The Falling 3D Particle model simulates the physics free fall with a 3D view. The ball falls with
constant acceleration in the z direction. Click-dragging on the ball changes its height but leaves
its velocity unchanged. The reset button stops the simulation and sets the initial conditions. An
ODE event is used to reverse the velocity when the ball reaches the floor and the coefficient of
restitution reduces the speed of the ball after the bounce. The time between bounces decreases
but this ”Zeno effect” is resolved by removing the acceleration if the ball is resting on the floor.
See Section 3.6.

Appendix 3A: Accuracy and Stability

Now that we have learned how to use numerical methods to find numerical solutions to simple
first-order differential equations, we need to develop some practical guidelines to help us estimate
the accuracy of the various methods. Because we have replaced a differential equation by a differ-
ence equation, our numerical solution is not identically equal to the true solution of the original
differential equation, except for special cases. The discrepancy between the two solutions has two
causes. One cause is that computers do not store numbers with infinite precision, but rather to a
maximum number of digits that is hardware and software dependent. As we have seen, Java al-
lows the programmer to distinguish between floating point numbers, that is, numbers with decimal
points, and integer numbers. Arithmetic with numbers represented by integers is exact, but we
cannot solve a differential equation using integer arithmetic. Arithmetic operations involving float-
ing point numbers, such as addition and multiplication, introduce roundoff error . For example,
if a computer only stored floating point numbers to two significant figures, the product 2.1 × 3.2
would be stored as 6.7 rather than 6.72. The significance of roundoff errors is that they accumulate
as the number of mathematical operations increases. Ideally, we should choose algorithms that
do not significantly magnify the roundoff error, for example, we should avoid subtracting numbers
that are nearly the same in magnitude.

CHAPTER 3. SIMULATING PARTICLE MOTION 84

The other source of the discrepancy between the true answer and the computed answer is
the error associated with the choice of algorithm. This error is called the truncation error . A
truncation error would exist even on an idealized computer that stored floating point numbers
with infinite precision and hence had no roundoff error. Because the truncation error depends on
the choice of algorithm and can be controlled by the programmer, you should be motivated to learn
more about numerical analysis and the estimation of truncation errors. However, there is no general
prescription for the best algorithm for obtaining numerical solutions of differential equations. We
will find in later chapters that the various algorithms have advantages and disadvantages, and the
appropriate selection depends on the nature of the solution, which you might not know in advance,
and on your objectives. How accurate must the answer be? Over how large an interval do you need
the solution? What kind of computer(s) are you using? How much computer time and personal
time do you have?

In practice, we usually can determine the accuracy of a numerical solution by reducing the
value of ∆t until the numerical solution is unchanged at the desired level of accuracy. Of course,
we have to be careful not to make ∆t too small, because too many steps would be required and
the computation time and roundoff error would increase.

In addition to accuracy, another important consideration is the stability of an algorithm. It
might happen that the numerical results are very good for short times, but diverge from the true
solution for longer times. This divergence might occur if small errors in the algorithm are multiplied
many times, causing the error to grow geometrically. Such an algorithm is said to be unstable for
the particular problem. We consider the accuracy and the stability of the Euler algorithm in
Problems 3.22 and 3.23.

Problem 3.22. Accuracy of the Euler algorithm

a. Use the Euler algorithm to compute the numerical solution of dy/dx = 2x with y = 0 at x = 0
and ∆x = 0.1, 0.05, 0.025, 0.01, and 0.005. Make a table showing the difference between the
exact solution and the numerical solution. Is the difference between these solutions a decreasing
function of ∆x? That is, if ∆x is decreased by a factor of two, how does the difference change?
Plot the difference as a function of ∆x. If your points fall approximately on a straight line, then
the difference is proportional to ∆x (for ∆x ¿ 1). The numerical method is called nth order
if the difference between the analytical solution and the numerical solution is proportional to
(∆x)n for a fixed value of x. What is the order of the Euler algorithm?

b. One way to determine the accuracy of a numerical solution is to repeat the calculation with
a smaller step size and compare the results. If the two calculations agree to p decimal places,
we can reasonably assume that the results are correct to p decimal places. What value of ∆x
is necessary for 0.1% accuracy at x = 2? What value of ∆x is necessary for 0.1% accuracy at
x = 4?

Problem 3.23. Stability of the Euler algorithm

a. Consider the differential equation

R
dQ

dt
= −Q

C
. (3.35)

with Q = 10 at t = 0. This equation represents the discharge of a capacitor C through a resistor
R. Choose R = 2000 Ω and C = 10−6 farads. Do you expect Q(t) to increase or decrease with

CHAPTER 3. SIMULATING PARTICLE MOTION 85

t? Does Q(t) change indefinitely or does it reach a steady-state value? Create a model to solve
(3.35) numerically using the Euler algorithm. What value of ∆t is necessary to obtain three
decimal accuracy at t = 0.005?

b. What is the nature of your numerical solution to (3.35) at t = 0.05 for ∆t = 0.005, 0.0025, and
0.001? Does a small change in ∆t lead to a large change in the computed value of Q? Is the
Euler algorithm stable for reasonable values of ∆t?

Appendix 3B: Numerical Integration of Newton’s Equation
of Motion

We summarize several of the common finite difference methods for the solution of Newton’s equa-
tions of motion with continuous force functions. The number and variety of algorithms currently
in use is evidence that no single method is superior under all conditions.

To simplify the notation, we consider the motion of a particle in one dimension and write
Newton’s equations of motion in the form

dv

dt
= a(t), (3.36a)

dx

dt
= v(t), (3.36b)

where a(t) ≡ a(x(t), v(t), t). The goal of finite difference methods is to determine the values of
xn+1 and vn+1 at time tn+1 = tn + ∆t. We already have seen that ∆t must be chosen so that
the integration method generates a stable solution. If the system is conservative, ∆t must be
sufficiently small so that the total energy is conserved to the desired accuracy.

The nature of many of the integration algorithms can be understood by expanding vn+1 =
v(tn + ∆t) and xn+1 = x(tn + ∆t) in a Taylor series. We write

vn+1 = vn + an∆t + O
(
(∆t)2

)
, (3.37a)

xn+1 = xn + vn∆t +
1
2
an(∆t)2 + O

(
(∆t)3

)
. (3.37b)

The familiar Euler algorithm is equivalent to retaining the O(∆t) terms in (3.37):

vn+1 = vn + an∆t (3.38a)
xn+1 = xn + vn∆t. (Euler algorithm) (3.38b)

Because order ∆t terms are retained in (3.38), the local truncation error, the error in one time step,
is order (∆t)2. The global error, the total error over the time of interest, due to the accumulation
of errors from step to step is order ∆t. This estimate of the global error follows from the fact
that the number of steps into which the total time is divided is proportional to 1/∆t. Hence, the
order of the global error is reduced by a factor of 1/∆t relative to the local error. We say that an
algorithm is nth order if its global error is order (∆t)n. The Euler algorithm is an example of a
first-order algorithm.

CHAPTER 3. SIMULATING PARTICLE MOTION 86

The Euler algorithm is asymmetrical because it advances the solution by a time step ∆t, but
uses information about the derivative only at the beginning of the interval. We already have found
that the accuracy of the Euler algorithm is limited and that frequently its solutions are not stable.
We also found that a simple modification of (3.38) yields solutions that are stable for oscillatory
systems. For completeness, we repeat the Euler-Cromer algorithm here:

vn+1 = vn + an∆t, (3.39a)
xn+1 = xn + vn+1∆t. (Euler-Cromer algorithm) (3.39b)

An obvious way to improve the Euler algorithm is to use the mean velocity during the interval
to obtain the new position. The corresponding midpoint algorithm can be written as

vn+1 = vn + an∆t, (3.40a)

and

xn+1 = xn +
1
2
(vn+1 + vn)∆t. (midpoint algorithm) (3.40b)

Note that if we substitute (3.40a) for vn+1 into (3.40b), we obtain

xn+1 = xn + vn∆t +
1
2
an ∆t2. (3.41)

Hence, the midpoint algorithm yields second-order accuracy for the position and first-order ac-
curacy for the velocity. Although the midpoint approximation yields exact results for constant
acceleration, it usually does not yield much better results than the Euler algorithm. In fact, both
algorithms are equally poor, because the errors increase with each time step.

A higher order algorithm whose error is bounded is the half-step algorithm. In this algorithm
the average velocity during an interval is taken to be the velocity in the middle of the interval.
The half-step algorithm can be written as

vn+ 1
2

= vn− 1
2

+ an∆t, (3.42a)

xn+1 = xn + vn+ 1
2
∆t. (half-step algorithm) (3.42b)

Note that the half-step algorithm is not self-starting, that is, (3.42a) does not allow us to calculate
v 1

2
. This problem can be overcome by adopting the Euler algorithm for the first half step:

v 1
2

= v0 +
1
2
a0 ∆t. (3.42c)

Because the half-step algorithm is stable, it is a common textbook algorithm. The Euler-Richardson
algorithm, a widely used half-step algorithm, can be motivated as follows. We first write x(t+∆t)
as

x1 ≈ x(t + ∆t) = x(t) + v(t)∆t +
1
2
a(t)(∆t)2. (3.43)

The notation x1 implies that x(t+∆t) is related to x(t) by one time step. We also may divide the
step ∆t into half steps and write the first half step, x(t + 1

2∆t), as

x(t +
1
2
∆t) ≈ x(t) + v(t)

∆t

2
+

1
2
a(t)

(∆t

2
)2

. (3.44)

CHAPTER 3. SIMULATING PARTICLE MOTION 87

The second half step, x2(t + ∆t), may be written as

x2(t + ∆t) ≈ x(t +
1
2
∆t) + v(t +

1
2
∆t)

∆t

2
+

1
2
a(t +

1
2
∆t)

(∆t

2
)2

. (3.45)

We substitute (3.44) into (3.45) and obtain

x2(t + ∆t) ≈ x(t) +
1
2
[
v(t) + v(t +

1
2
∆t)

]
∆t +

1
2
[
a(t) + a(t +

1
2
∆t)

](1
2
∆t

)2
. (3.46)

Now a(t + 1
2∆t) ≈ a(t) + 1

2a′(t)∆t. Hence to order (∆t)2, (3.46) becomes

x2(t + ∆t) = x(t) +
1
2
[
v(t) + v(t +

1
2
∆t)

]
∆t +

1
2
[
2a(t)

](1
2
∆t

)2
. (3.47)

We can find an approximation that is accurate to order (∆t)3 by combining (3.43) and (3.47)
so that the terms to order (∆t)2 cancel. The combination that works is 2x2 − x1, which gives the
Euler-Richardson result:

xer(t + ∆t) ≡ 2x2(t + ∆t)− x1(t + ∆t) = x(t) + v(t +
1
2
∆t)∆t + O(∆t)3. (3.48)

The same reasoning leads to an approximation for the velocity accurate to (∆t)3 giving

ver ≡ 2v2(t + ∆t)− v1(t + ∆t) = v(t) + a(t +
1
2
∆t)∆t + O(∆t)3. (3.49)

A bonus of the Euler-Richardson algorithm is that the quantities |x2 − x1| and |v2 − v1| give
an estimate for the error. We can use these estimates to change the time step so that the error is
always within some desired level of precision. We will see that the Euler-Richardson algorithm is
equivalent to the second-order Runge-Kutta algorithm (see (3.59)).

One of the most common energy drift-free higher order algorithms is commonly attributed to
Verlet. We write the Taylor series expansion for xn−1 in a form similar to (3.37b):

xn−1 = xn − vn∆t +
1
2
an(∆t)2. (3.50)

If we add the forward and reverse forms, (3.37b) and (3.50) respectively, we obtain

xn+1 + xn−1 = 2xn + an(∆t)2 + O
(
(∆t)4

)
(3.51)

or

xn+1 = 2xn − xn−1 + an(∆t)2. (leapfrog algorithm) (3.52a)

Similarly, the subtraction of the Taylor series for xn+1 and xn−1 yields

vn =
xn+1 − xn−1

2∆t
. (leapfrog algorithm) (3.52b)

Note that the global error associated with the leapfrog algorithm (3.52) is third-order for the
position and second-order for the velocity. However, the velocity plays no part in the integration

CHAPTER 3. SIMULATING PARTICLE MOTION 88

of the equations of motion. The leapfrog algorithm is also known as the explicit central difference
algorithm. Because this form of the leapfrog algorithm is not self-starting, another algorithm must
be used to obtain the first few terms. An additional problem is that the new velocity (3.52b) is
found by computing the difference between two quantities of the same order of magnitude. Such
an operation results in a loss of numerical precision and may give rise to roundoff errors.

A mathematically equivalent version of the leapfrog algorithm is given by

xn+1 = xn + vn∆t +
1
2
an(∆t)2 (3.53a)

vn+1 = vn +
1
2
(an+1 + an)∆t. (velocity Verlet algorithm) (3.53b)

We see that (3.53), known as the velocity form of the Verlet algorithm, is self-starting and minimizes
roundoff errors. Because we will not use (3.52) in the text, we will refer to (3.53) as the Verlet
algorithm.

We can derive (3.53) from (3.52) by the following considerations. We first solve (3.52b) for
xn−1 and write xn−1 = xn+1 − 2vn∆t. If we substitute this expression for xn−1 into (3.52a) and
solve for xn+1, we find the form (3.53a). Then we use (3.52b) to write vn+1 as:

vn+1 =
xn+2 − xn

2∆t
, (3.54)

and use (3.52a) to obtain xn+2 = 2xn+1−xn +an+1(∆t)2. If we substitute this form for xn+2 into
(3.54), we obtain

vn+1 =
xn+1 − xn

∆t
+

1
2
an+1∆t. (3.55)

Finally, we use (3.53a) for xn+1 to eliminate xn+1 − xn from (3.55); after some algebra we obtain
the desired result (3.53b).

Another useful algorithm that avoids the roundoff errors of the leapfrog algorithm is due to
Beeman and Schofield. We write the Beeman algorithm in the form:

xn+1 = xn + vn∆t +
1
6
(4an − an−1)(∆t)2 (3.56a)

vn+1 = vn +
1
6
(2an+1 + 5an − an−1)∆t. (Beeman algorithm) (3.56b)

Note that (3.56) does not calculate particle trajectories more accurately than the Verlet algorithm.
Its advantage is that it generally does a better job of maintaining energy conservation. However,
the Beeman algorithm is not self-starting.

The most common finite difference method for solving ordinary differential equations is the
Runge-Kutta method. To explain the many algorithms based on this method, we consider the
solution of the first-order differential equation

dx

dt
= f(x, t). (3.57)

Runge-Kutta algorithms evaluate the rate, f(x, t), multiple times in the interval [t, t + ∆t]. For
example, the classic fourth-order Runge-Kutta algorithm, which we will discuss in the following,

CHAPTER 3. SIMULATING PARTICLE MOTION 89

evaluates f(x, t) at four times tn, tn + a1∆t, tn + a2∆t, and tn + a3∆t. Each evaluation of f(x, t)
produces a slightly different rate r1, r2, r3, and r4. The idea is to advance the solution using a
weighted average of the intermediate rates:

yn+1 = yn + (c1r1 + c2r2 + c3r3 + c4r4)∆t. (3.58)

The various Runge-Kutta algorithms correspond to different choices for the constants ai and
ci. These algorithms are classified by the number of intermediate rates {ri, i = 1, · · · , N}. The
determination of the Runge-Kutta coefficients is difficult for all but the lowest order methods,
because the coefficients must be chosen to cancel as many terms in the Taylor series expansion
of f(x, t) as possible. The first non-zero expansion coefficient determines the order of the Runge-
Kutta algorithm. Fortunately, these coefficients are tabulated in most numerical analysis books.

To illustrate how the various sets of Runge-Kutta constants arise, consider the case N = 2.
The second-order Runge-Kutta solution of (3.57) can be written using standard notation as:

xn+1 = xn + k2 + O
(
(∆t)3

)
, (3.59a)

where

k2 = f(xn +
k1

2
, tn +

∆t

2
)∆t. (3.59b)

k1 = f(xn, tn)∆t (3.59c)

Note that the weighted average uses c1 = 0 and c2 = 1. The interpretation of (3.59) is as follows.
The Euler algorithm assumes that the slope f(xn, tn) at (xn, tn) can be used to extrapolate to
the next step, that is, xn+1 = xn + f(xn, tn)∆t. A plausible way of making a a more accurate
determination of the slope is to use the Euler algorithm to extrapolate to the midpoint of the
interval and then to use the midpoint slope across the full width of the interval. Hence, the
Runge-Kutta estimate for the rate is f(x∗, tn + 1

2∆t), where x∗ = xn + 1
2f(xn, tn)∆t (see (3.59c)).

The application of the second-order Runge-Kutta algorithm to Newton’s equation of motion
(3.36) yields

k1v = an(xn, vn, tn)∆t (3.60a)
k1x = vn∆t (3.60b)

k2v = a(xn +
k1x

2
, vn +

k1v

2
, t +

∆t

2
)∆t (3.60c)

k2x = (vn +
k1v

2
)∆t, (3.60d)

and

vn+1 = vn + k2v (3.61a)
xn+1 = xn + k2x. (second-order Runge Kutta) (3.61b)

Note that the second-order Runge-Kutta algorithm in (3.60) and (3.61) is identical to the Euler-
Richardson algorithm.

CHAPTER 3. SIMULATING PARTICLE MOTION 90

Other second-order Runge-Kutta type algorithms exist. For example, if we set c1 = c2 = 1
2

we obtain the endpoint method:

yn+1 = yn +
1
2
k1 +

1
2
k2 (3.62a)

where
k1 = f(xn, tn)∆t (3.62b)
k2 = f(xn + k1, tn + ∆t)∆t. (3.62c)

And if we set c1 = 1
3 and c2 = 2

3 , we obtain Ralston’s method:

yn+1 = yn +
1
3
k1 +

2
3
k2 (3.63a)

where
k1 = f(xn, tn)∆t (3.63b)

k2 = f(xn +
3
4
k1, tn +

3
4
∆t)∆t. (3.63c)

Note that Ralston’s method does not calculate the rate at uniformly spaced subintervals of ∆t. In
general, a Runge-Kutta method adjusts the partition of ∆t as well as the constants ai and ci so
as to minimize the error.

In the fourth-order Runge-Kutta algorithm, the derivative is computed at the beginning of
the time interval, in two different ways at the middle of the interval, and again at the end of the
interval. The two estimates of the derivative at the middle of the interval are given twice the weight
of the other two estimates. The algorithm for the solution of (3.57) can be written in standard
notation as

k1 = f(xn, tn)∆t (3.64a)

k2 = f(xn +
k1

2
, tn +

∆t

2
)∆t (3.64b)

k3 = f(xn +
k2

2
, tn +

∆t

2
)∆t (3.64c)

k4 = f(xn + k3, tn + ∆t)∆t, (3.64d)

and
xn+1 = xn +

1
6
(k1 + 2k2 + 2k3 + k4). (3.65)

The application of the fourth-order Runge-Kutta algorithm to Newton’s equation of motion

CHAPTER 3. SIMULATING PARTICLE MOTION 91

(3.36) yields

k1v = a(xn, vn, tn)∆t (3.66a)
k1x = vn∆t (3.66b)

k2v = a(xn +
k1x

2
, vn +

k1v

2
, tn +

∆t

2
)∆t (3.66c)

k2x = (vn +
k1v

2
)∆t (3.66d)

k3v = a(xn +
k2x

2
, vn +

k2v

2
, tn +

∆t

2
)∆t (3.66e)

k3x = (vn +
k2v

2
)∆t (3.66f)

k4v = a(xn + k3x, vn + k3v, t + ∆t) (3.66g)
k4x = (vn + k3x)∆t, (3.66h)

and

vn+1 = vn +
1
6
(k1v + 2k2v + 2k3v + k4v) (3.67a)

xn+1 = xn +
1
6
(k1x + 2k2x + 2k3x + k4x). (fourth-order Runge-Kutta) (3.67b)

Because Runge-Kutta algorithms are self-starting, they are frequently used to obtain the first few
iterations for an algorithm that is not self-starting.

As we have discussed, one way to determine the accuracy of a solution is to calculate it twice
with two different values of the time step. One way to make this comparison is to choose time
steps ∆t and ∆t/2 and compare the solution at the desired time. If the difference is small, the
error is assumed to be small. This estimate of the error can be used to adjust the value of the time
step. If the error is too large, than the time step can be halved. And if the error is much less than
the desired value, the time step can be increased so that the program runs faster.

A better way of controlling the step size was developed by Fehlberg who showed that it
is possible to evaluate the rate in such as way as to simultaneously obtain two Runge-Kutta
approximations with different orders. For example, it is, possible to run a fourth-order and fifth-
order algorithm in tandem by evaluating five rates. We thus obtain different estimates of the true
solution using different weighed averages of these rates:

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 (3.68a)
y∗n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4. (3.68b)

Because we can assume that the fifth-order solution is closer to the true solution than the fourth
order algorithm, the difference |y − y∗| provides a good estimate of the error of the fourth-order
method. If this estimated error is larger than the desired tolerance, then the step size is decreased.
If the error is smaller than the desired tolerance, the step size is increased. The RK45 ODE solver
as well as the on the EJS ODE page implements this technique for choosing the optimal step size.

In applications where the accuracy of the numerical solution is important, adaptive time step
algorithms should always be used. As stated in Numerical Recipes: “Many small steps should

CHAPTER 3. SIMULATING PARTICLE MOTION 92

tiptoe through treacherous terrain, while a few great strides should speed through uninteresting
countryside. The resulting gains in efficiency are not mere tens of percents or factors of two; they
can sometimes be factors of ten, a hundred, or more.”

Adaptive step size algorithms are not well suited for tabulating functions or for simulation
because the intervals between data points are not constant. An easy way to circumvent this
problem is to use a method that takes multiple adaptive steps while checking to insure that the
last step does not overshoot the desired fixed step size. The ODEMultistepSolver implements this
technique. The solver acts like a fixed step size solver, even though the solver monitors its internal
step size so as to achieve the desired accuracy.

It also is possible to combine the results from a calculation using two different values of the
time step to yield a more accurate expression. Consider the Taylor series expansion of f(t + ∆t)
about t:

f(t + ∆t) = f(t) + f ′(t)∆t +
1
2!

f ′′(t)(∆t)2 + . . . (3.69)

Similarly, we have

f(t−∆t) = f(t)− f ′(t)∆t +
1
2!

f ′′(t)(∆t)2 + . . . (3.70)

We subtract (3.70) from (3.69) to find the usual central difference approximation for the derivative

f ′(t) ≈ D1(∆t) =
f(t + ∆t)− f(t−∆t)

2∆t
− (∆t)2

6
f ′′′(t). (3.71)

The truncation error is order (∆t)2. Next consider the same relation, but for a time step that is
twice as large.

f ′(t) ≈ D1(2∆t) =
f(t + 2∆t)− f(t− 2∆t)

4∆t
− 4(∆t)2

6
f ′′′(t). (3.72)

Note that the truncation error is again order (∆t)2, but is four times bigger. We can eliminate
this error to leading order by dividing (3.72) by 4 and subtracting it from (3.71):

f ′(t)− 1
4
f ′(t) =

3
4
f ′(t) ≈ D1(∆t)− 1

4
D1(2∆t),

or

f ′(t) ≈ 4D1(∆t)−D1(2∆t)
3

. (3.73)

It is easy to show that the error for f ′(t) is order (∆t)4. Recursive difference formulas for derivatives
can be obtained by canceling the truncation error at each order. This method is called Richardson
extrapolation.

Another class of algorithms are predictor-corrector algorithms. The idea is to first predict the
value of the new position:

xp = xn−1 + 2vn∆t. (predictor) (3.74)

CHAPTER 3. SIMULATING PARTICLE MOTION 93

The predicted value of the position allows us to predict the acceleration ap. Then using ap, we
obtain the corrected values of vn+1 and xn+1:

vn+1 = vn +
1
2
(ap + an)∆t (3.75a)

xn+1 = xn +
1
2
(vn+1 + vn)∆t. (corrected) (3.75b)

The corrected values of xn+1 and vn+1 are used to obtain a new predicted value of an+1, and hence
a new predicted value of vn+1 and xn+1. This process is repeated until the predicted and corrected
values of xn+1 differ by less than the desired value.

Note that the predictor-corrector algorithm is not self-starting. The predictor-corrector al-
gorithm gives more accurate positions and velocities than the leapfrog algorithm and is suitable
for very accurate calculations. However, it is computationally expensive, needs significant storage
(the forces at the last two stages, and the coordinates and velocities at the last step), and becomes
unstable for large time steps.

As we have emphasized, there is no single algorithm for solving Newton’s equations of motion
that is superior under all conditions. It is usually a good idea to start with a simple algorithm,
and then to try a higher order algorithm to see if any real improvement is obtained.

We now discuss an important class of algorithms, known as symplectic algorithms, which are
particularly suitable for doing long time simulations of Newton’s equations of motion when the
force is only a function of position. The basic idea of these algorithms derives from the Hamiltonian
theory of classical mechanics. We first give some basic results needed from this theory to understand
the importance of symplectic algorithms.

In Hamiltonian theory the generalized coordinates, qi, and momenta, pi, take the place of the
usual positions and velocities familiar from Newtonian theory. The index i labels both a particle
and a component of the motion. For example, in a two particle system in two dimensions, i would
run from 1 to 4. The Hamiltonian (which for our purposes can be thought of as the total energy)
is written as

H(qi, pi) = T + V, (3.76)

where T is the kinetic energy and V is the potential energy. Hamilton’s theory is most relevant
for non-dissipative systems, which we consider here. For example, for a two particle system in two
dimensions connected by a spring, H would take the form:

H =
p2
1

2m
+

p2
2

2m
+

p2
3

2m
+

p2
4

2m
+

1
2
k(q1 − q3)2 +

1
2
k(q2 − q4)2, (3.77)

where if the particles are labeled as A and B, we have p1 = px,A, p2 = py,A, p3 = px,B , p4 = py,B ,
and similarly for the qi. The equations of motion are written as first-order differential equations
known as Hamilton’s equations:

ṗi = −∂H

∂qi
(3.78a)

q̇i =
∂H

∂pi
, (3.78b)

CHAPTER 3. SIMULATING PARTICLE MOTION 94

which are equivalent to Newton’s second law and an equation relating the velocity to the momen-
tum. The beauty of Hamiltonian theory is that these equations are correct for other coordinate
systems such as polar coordinates, and they also describe rotating systems where the momenta
become angular momenta, and the position coordinates become angles.

Because the coordinates and momenta are treated on an equal footing, we can consider the
properties of flow in phase space where the dimension of phase space includes both the coordinates
and momenta. Thus, one particle moving in one dimension corresponds to a two-dimensional
phase space. If we imagine a collection of initial conditions in phase space forming a volume in
phase space, then one of the results of Hamiltonian theory is that this volume does not change
as the system evolves. A slightly different result, called the symplectic property, is that the sum
of the areas formed by the projection of the phase space volume onto the planes, qi, pi, for each
pair of coordinates and momenta also does not change with time. Numerical algorithms that have
this property are called symplectic algorithms. These algorithms are built from the following two
statements which are repeated M times for each time step.

p
(k+1)
i = p

(k)
i + akF

(k)
i δt (3.79a)

q
(k+1)
i = q

(k)
i + bkp

(k+1)
i δt, (3.79b)

where F
(k)
i ≡ −∂V (q(k)

i)/∂q
(k)
i . The label k runs from 0 to M − 1 and one time step is given by

∆t = Mδt. (We will see that δt is the time step of an intermediate calculation that is made during
the time step ∆t.) Note that in the update for qi, the already updated pi is used. For simplicity,
we assume that the mass is unity.

Different algorithms correspond to different values of M , ak, and bk. For example, a0 = b0 =
M = 1 corresponds to the Euler-Cromer algorithm, and M = 2, a0 = a1 = 1, b0 = 2, and b1 = 0 is
equivalent to the Verlet algorithm as we will now show. If we substitute in the appropriate values
for ak and bk into (3.79), we have

p
(1)
i = p

(0)
i + F

(0)
i δt (3.80a)

q
(1)
i = q

(0)
i + 2p

(1)
i δt (3.80b)

p
(2)
i = p

(1)
i + F

(1)
i δt (3.80c)

q
(2)
i = q

(1)
i (3.80d)

We next combine (3.80a) and (3.80c) for the momentum coordinate and (3.80b) and (3.80d) for
the position, and obtain

p
(2)
i = p

(0)
i + (F (0)

i + F
(1)
i)δt (3.81a)

q
(2)
i = q

(0)
i + 2p

(1)
i δt. (3.81b)

We take δt = ∆t/2 and combine (3.81b) with (3.80a) and find

p
(2)
i = p

(0)
i +

1
2
(F (0)

i + F
(1)
i)∆t (3.82a)

q
(2)
i = q

(0)
i + p

(0)
i ∆t +

1
2
F

(0)
i (∆t)2, (3.82b)

CHAPTER 3. SIMULATING PARTICLE MOTION 95

which is identical to the Verlet algorithm, (3.53), because for unit mass the force and acceleration
are equal.

Reversing the order of the updates for the coordinates and the momenta also leads to sym-
plectic algorithms:

q
(k+1)
i = q

(k)
i + bkδtp

(k)
i , (3.83a)

p
(k+1)
i = p

(k)
i + akδtF

(k+1)
i (3.83b)

A third variation uses (3.79) and (3.83) for different values of k in one algorithm. Thus, if M = 2,
which corresponds to two intermediate calculations per time step, we could use (3.79) for the first
intermediate calculation and (3.83) for the second.

Why are these algorithms important? Because of the symplectic property, these algorithms will
simulate an exact Hamiltonian, although not the one we started with in general (see Problem 3.2,
for example). However, this Hamiltonian will be close to the one we wish to simulate if the ak and
bk are properly chosen.

References and Suggestions for Further Reading

F. S. Acton, Numerical Methods That Work, The Mathematical Association of America (1990),
Chapter 5.

Robert. K. Adair, The Physics of Baseball, third edition, Harper Collins (2002).

Byron L. Coulter and Carl G. Adler, “Can a body pass a body falling through the air?,” Am.
J. Phys. 47, 841–846 (1979). The authors discuss the limiting conditions for which the drag
force is linear or quadratic in the velocity.

Alan Cromer, “Stable solutions using the Euler approximation,” Am. J. Phys. 49, 455–459 (1981).
The author shows that a minor modification of the usual Euler approximation yields stable
solutions for oscillatory systems including planetary motion and the harmonic oscillator (see
Chapter 4).

Paul L. DeVries, A First Course in Computational Physics, John Wiley & Sons (1994).

Denis Donnelly and Edwin Rogers, “Symplectic integrators: An introduction,” Am. J. Phys., to
be published.

A. P. French, Newtonian Mechanics, W. W. Norton & Company (1971). Chapter 7 has an excellent
discussion of air resistance and a detailed analysis of motion in the presence of drag resistance.

Ian R. Gatland, “Numerical integration of Newton’s equations including velocity-dependent forces,”
Am J. Phys. 62, 259–265 (1994). The author discusses the Euler-Richardson algorithm.

Stephen K. Gray, Donald W. Noid, and Bobby G. Sumpter, “Symplectic integrators for large
scale molecular dynamics simulations: A comparison of several explicit methods,” J. Chem.
Phys. 101 (5), 4062–4072 (1994).

CHAPTER 3. SIMULATING PARTICLE MOTION 96

Margaret Greenwood, Charles Hanna, and John Milton, “Air resistance acting on a sphere: Nu-
merical analysis, strobe photographs, and videotapes,” Phys. Teacher 24, 153–159 (1986).
More experimental data and theoretical analysis are given for the fall of ping-pong and
styrofoam balls. Also see Mark Peastrel, Rosemary Lynch, and Angelo Armenti, “Terminal
velocity of a shuttlecock in vertical fall,” Am. J. Phys. 48, 511–513 (1980).

Michael J. Kallaher, editor Revolutions in Differential Equations: Exploring ODEs with Modern
Technology, The Mathematical Association of America (1999).

K. S. Krane, “The falling raindrop: variations on a theme of Newton,” Am. J. Phys. 49, 113–117
(1981). The author discusses the problem of mass accretion by a drop falling through a cloud
of droplets.

George C. McGuire, “Using computer algebra to investigate the motion of an electric charge in
magnetic and electric dipole fields,” Am. J. Phys. 71 (8), 809–812 (2003).

Rabindra Mehta, “Aerodynamics of sports balls,” in Ann. Rev. Fluid Mech. 17, 151–189 (1985).

Neville de Mestre, The Mathematics of Projectiles in Sport, Cambridge University Press (1990).
The emphasis of this text is on solving many problems in projectile motion, for example,
baseball, basketball, and golf, in the context of mathematical modeling. Many references to
the relevant literature are given.

Tao Pang, Computational Physics, Cambridge University Press (1997).

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numeri-
cal Recipes, second edition, Cambridge University Press (1992). Chapter 16 discusses the
integration of ordinary differential equations.

Emilio Segré, Nuclei and Particles, second edition, W. A. Benjamin (1977). Chapter 5 discusses
decay cascades. The decay schemes described briefly in Problem 3.17 are taken from C. M.
Lederer, J. M. Hollander, and I. Perlman, Table of Isotopes, sixth edition, John Wiley &
Sons (1967).

Lawrence F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman and
Hall (1994).

