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The importance of computers in physics and the nature of computer simulation is discussed. The
nature of object-oriented programming and various computer languages also is considered.

1.1 Importance of computers in physics

Computation is now an integral part of contemporary science, and is having a profound effect on
the way we do physics, on the nature of the important questions, and on the physical systems we
choose to study. Developments in computer technology are leading to new ways of thinking about
physical systems. Asking “How can I formulate this problem on a computer?” has led to the
understanding that it is practical and natural to formulate physical laws as rules for a computer
rather than only in terms of differential equations.

For the purposes of discussion we will divide the use of computers in physics into the following
categories: numerical analysis, symbolic manipulation, visualization, simulation, and the collec-
tion and analysis of data. Numerical analysis refers to the solution of well-defined mathematical
problems to produce numerical (in contrast to symbolic) solutions. For example, we know that
the solution of many problems in physics can be reduced to the solution of a set of simultaneous
linear equations. Consider the equations

2x+ 3y = 18

x− y = 4 .

It is easy to find the analytical solution x = 6, y = 2 using the method of substitution. Suppose we
wish to solve a set of four simultaneous equations. We again can find an analytical solution, perhaps
using a more sophisticated method. However, if the number of simultaneous equations becomes
much larger, we would need to use a computer to find a solution. In this mode the computer is
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a tool of numerical analysis. Because it often is necessary to compute multidimensional integrals,
manipulate large matrices, or solve nonlinear differential equations, this use of the computer is
important in physics.

One of the strengths of mathematics is its ability to use the power of abstraction, which allows
us to solve many similar problems simultaneously by using symbols. Computers can be used to
do much of the symbolic manipulation. As an example, suppose we want to know the solution
of the quadratic equation, ax2 + bx + c = 0. A symbolic manipulation program can give the
solution as x = [−b±

√
b2 − 4ac]/2a. In addition, such a program can give numerical solutions for

specific values of a, b, and c. Mathematical operations such as differentiation, integration, matrix
inversion, and power series expansion can be performed using symbolic manipulation programs.
The calculation of Feynman diagrams, which represent multi-dimensional integrals of importance
in quantum electrodynamics, has been a major impetus to the development of computer algebra
software that can manipulate and simplify symbolic expressions. Maxima, Maple, Mathematica,
and Sage are examples of software packages that have symbolic manipulation capabilities as well
as many tools for numerical analysis. Matlab and Octave are examples of software packages that
are convenient for computations involving matrices and related tasks.

As the computer plays an increasing role in our understanding of physical phenomena, the
visual representation of complex numerical results is becoming even more important. The human
eye in conjunction with the visual processing capacity of the brain is a very sophisticated device.
Our eyes can determine patterns and trends that might not be evident from tables of data and
can observe changes with time that can lead to insight into the important mechanisms underlying
a system’s behavior. The use of graphics also can increase our understanding of the nature of
analytical solutions. For example, what does a sine function mean to you? We suspect that your
answer is not the series, sinx = x− x3/3! + x5/5! + . . ., but rather a periodic, constant amplitude
curve (see Figure 1.1). What is most important is the mental image gained from a visualization of
the form of the function.

Traditional modes of presenting data include two- and three-dimensional plots including con-
tour and field line plots. Frequently, more than three variables are needed to understand the
behavior of a system, and new methods of using color and texture are being developed to help
researchers gain greater insight about their data.

An essential role of science is to develop models of nature. To know whether a model is
consistent with observation, we have to understand the behavior of the model and its predictions.
One way to do so is to implement the model on a computer. We call such an implementation a
computer simulation or simulation for short. For example, suppose a teacher gives $10 to each
student in a class of 100. The teacher, who also begins with $10 in her pocket, chooses a student
at random and flips a coin. If the coin is heads, the teacher gives $1 to the student; otherwise,
the student gives $1 to the teacher. If either the teacher or the student would go into debt by
this transaction, the transaction is not allowed. After many exchanges, what is the probability
that a student has s dollars? What is the probability that the teacher has t dollars? Are these
two probabilities the same? Although these particular questions can be answered by analytical
methods, many problems of this nature cannot be solved in this way (see Problem 1.1).

One way to determine the answers to these questions is to do a classroom experiment. However,
such an experiment would be difficult to arrange, and it would be tedious to do a sufficient number
of transactions.
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Figure 1.1: Plot of the sine function. What is the meaning of the sine function?

A more practical way to proceed is to convert the rules of the model into a computer program,
simulate many exchanges, and estimate the quantities of interest. Knowing the results might help
us gain more insight into the nature of an analytical solution if one exists. We also can modify the
rules and ask “what if?” questions. For example, would the probabilities change if the students
could exchange money with one another? What would happen if the teacher were allowed to go
into debt?

Simulations frequently use the computational tools of numerical analysis and visualization, and
occasionally symbolic manipulation. The difference is one of emphasis. Simulations are usually
done with a minimum of analysis. Because simulation emphasizes an exploratory mode of learning,
we will stress this approach.

Computers also are involved in all phases of a laboratory experiment, from the design of the
apparatus to the collection and analysis of data. LabView is an example of a data acquisition
program. Some of the roles of the computer in laboratory experiments, such as the varying of
parameters and the analysis of data, are similar to those encountered in simulations. However,
the tasks involved in real-time control and interactive data analysis are qualitatively different and
involve the interfacing of computer hardware to various types of instrumentation. We will not
discuss this use of the computer.

1.2 The importance of computer simulation

Why is computation becoming so important in physics? One reason is that most of our analytical
tools such as differential calculus are best suited to the analysis of linear problems. For example,
you probably have analyzed the motion of a particle attached to a spring by assuming a linear
restoring force and solving Newton’s second law of motion. In this case, a small change in the
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Laboratory experiment Computer simulation
sample model
physical apparatus computer program
calibration testing of program
measurement computation
data analysis data analysis

Table 1.1: Analogies between a computer simulation and a laboratory experiment.

force on the particle leads to a small change in its velocity. However, many natural phenomena
are nonlinear, and a small change in a variable might produce a large non-proportional change in
another. Because few nonlinear problems can be solved by analytical methods, the computer gives
us a new tool to explore nonlinear phenomena.

Another reason for the importance of computation is the growing interest in systems with many
variables or with many degrees of freedom. The money exchange model described in Section 1.1
is a simple example of a system with many variables.

Computer simulations are sometimes referred to as computer experiments because they share
much in common with laboratory experiments. Some of the analogies are shown in Table 1.1.
The starting point of a simulation is the development of an idealized model of a physical system
of interest. We then need to specify a procedure or algorithm for implementing the model on
a computer and decide what quantities to measure. The results of a simulation can serve as a
bridge between laboratory experiments and theoretical calculations. In some cases we can obtain
accurateresults by simulating an idealized model that has no laboratory counterpart. The results
of the idealized model can serve as a stimulus to the development of the theory. In other cases
we can do simulations of a more realistic model than can be done theoretically, and hence make
a more direct comparison with laboratory experiments. Computation has become a third way of
doing physics and complements both theory and experiment.

Computer simulations, like laboratory experiments, are not substitutes for thinking, but are
tools that we use to understand natural phenomena. The goal of all our investigations of funda-
mental phenomena is to seek explanations of natural phenomena that can be stated concisely.

1.3 Programming languages

There is no single best programming language any more than there is a best natural language.
Fortran is the oldest of the more popular scientific programming languages and was developed by
John Backus and his colleagues at IBM between 1954 and 1957. Fortran is commonly used in
scientific applications and continues to evolve. Fortran 90/95/2000 has many modern features that
are similar to C/C++.

The Basic programming language was developed in 1965 by John Kemeny and Thomas Kurtz
at Dartmouth College as a language for introductory courses in computer science. In 1983 Kemeny
and Kurtz extended the language to include platform independent graphics and advanced control
structures necessary for structured programming. The programs in the first two editions of our
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computer simulation textbook were written in this version of Basic, known as True Basic.

C was developed by Dennis Ritchie at Bell Laboratories around 1972 in parallel with the Unix
operating system. C++ is an extension of C designed by Bjarne Stroustrup at Bell laboratories
in the mid-eighties. C++ is considerably more complex than C, has object oriented features, and
other extensions. In general, programs written in C/C++ have high performance, but can be
difficult to debug. C and C++ are popular choices for developing operating systems and software
applications because they provide direct access to memory and other system resources.

Python, like Basic, was designed to be easy to learn and use. Python enthusiasts like to say
that C and C++ were written to make life easier for the computer, but Python was designed to
be easier for the programmer. Guido van Rossum created Python in the late 80’s and early 90’s.
It is an interpreted, object-oriented, general-purpose programming language that also is good for
prototyping. Because Python is interpreted, its performance is significantly less than optimized
languages like C or Fortran.

Java is an object-oriented language that was created by James Gosling and others at Sun
Microsystems. Since Java was introduced in late 1995, it has rapidly evolved, and has become very
popular and is the language of choice in most introductory computer science courses. Java borrows
much of its syntax from C++, but has a simpler structure. Although the language contains only
fifty keywords, the Java platform adds a rich library that enables a Java program to connect to
the internet, render images, and perform other high-level tasks.

Java can be thought of as a platform in itself, similar to the Macintosh and Windows, because
it has an application programming interface (API) that enables cross-platform graphics and user
interfaces. Java programs are compiled to a platform neutral byte code so that they can run on
any computer that has a Java Virtual Machine (VM). Despite the high level of abstraction and
platform independence, the performance of Java is comparable with native languages because the
Java VM compiles and optimizes the byte code for the host platform when the program is run.

1.4 Easy Java Simulations

Every programming language requires tools, such as editors and compilers, to produce and dis-
tribute ready to run programs. These tools are often integrated into development environments
with graphical user interfaces, such as Eclipse, that provide easy access to the underlying tools. We
have chosen the Easy Java Simulations (EJS ) tool shown in Figure 1.2 because its dynamic and
highly interactive user interface greatly reduces the amount of programming required to implement
a model and an algorithm. Easy Java Simulations enables experienced programmers and novices
to quickly and easily prototype, test, and distribute packages of Java simulations. EJS gently
introduces novices to Java syntax, but even experienced programmers find it useful because it is
faster and easier to:

� develop a prototype of an application to test an idea or algorithm;

� create user interfaces without programming;

� create models whose structure and algorithms can be inspected and understood by non-
programmers;
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(a) Model.

(b) View.

Figure 1.2: The Model workpanel provides access to the data and methods that define the physics.
The View workpanel shows the graphical user interface that connects to the model.

� encourage students or colleagues to create their own simulations;

� quickly prepare simulations to be distributed as applets or as stand alone programs;

� and create a package containing multiple programs and the associated curricular material.

Easy Java Simulations simplifies the modeling process by breaking the process into activities
that are selected using radio buttons: (1) documentation, (2) modeling, and (3) interface design.
The model’s html-based documentation is accessed by selecting Description. The physics is ac-
cessed by selecting Model, which provides access to the data and the methods (Java code) by
which the model can evolve. A plot is a visual representation of the data and is an example of
a View and EJS provides a graphical drag-and-drop editor for the view which eliminates much
coding. It is possible to have multiple views of the same data but there is only one model. The
views contains graphical user interface controls, such as buttons and input fields, that allows a
user to interact with model and these controls are also created using the drag and drop editor.
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This model-view-controller analysis of a program is a well known computer science paradigm and
provides a solid foundation for software development.

The advantage of EJS for teaching computational physics is that it forces the user to separate
the model into logical parts and to separate the model from the view. Students learn the logic of
computer modeling using loops and control structures and study algorithms used in professional
practice when building models. Students are also introduced to object-oriented programming
concepts by using object properties and methods when they create user interfaces. However, little
user-interface coding is required because the user interface code is created automatically by EJS.
A button click is all that is required to produce a stand-alone ready-to-run computer program (see
Figure 1.3) that implements the model.

Our choice of Easy Java Simulations for this text is motivated in part by its platform inde-
pendence, flexible standard graphics libraries, good performance, and its availability at no cost.
The popularity of the Java language and its open source nature ensures that EJS will continue
to evolve. EJS users can leverage a vast collection of third-party Java libraries, including those
for numerical calculations and visualization. Java also is relatively simple to learn, especially the
subset of Java that we will need to simulate physical systems.

Easy Java Simulations can be downloaded from the EJS website and installed (unzipped) into
a directory as explained in Appendix 1A. Readers who wish to use another programming language
should find the algorithmic components of the Java listings in the text to be easily converted into
a language of their choice.

Figure 1.3: EJS produces ready-to-run computer programs as specified in the Model and View
workpanels.
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Figure 1.4: The Digital Libraries window of EJS. Select one of the available repositories using
the combo box at the top of the window and click the Get catalog button to retrieve the list of
available models.

1.5 How to obtain models

Although a small selection of models is copied into the source directory of your workspace (unless
you unselected this option when you first ran EJS ), a much larger selection is available on the
Internet. The easiest way to access these models is through the Digital Libraries (DL) icon in

theEJS taskbar . The taskbar icon opens a window that connects to several online digital
collections. The DL connection window displayed in Figure 1.4 contains a combo box that lists
these repositories. Select the Davidson College library and click the Get catalog button to browse
the models in the DL. The left frame of the DL connection dialog shows the library catalog tree
and the right frame shows information about the selected model as shown in Figure 1.5. Double-
clicking a leaf (end) node in the catalog, or clicking the Download button, will retrieve the model
and its auxiliary files from the library after asking for a storage location in the source directory
in your EJS workspace. Because source files are usually small, the download takes place quickly.
EJS opens the model when the download is complete and you can now inspect, run, or modify the
downloaded model as you work through the problems and exercises in this text.

The ComPADRE Pathway, a part of the National Science Digital Library (U.S.), hosts
another EJS DL. ComPADRE is a network of educational resources supporting teachers and
students in Physics and Astronomy and the Open Source Physics (OSP) collection in ComPADRE
(http://www.compadre.org/OSP) contains executable simulations and curriculum of interest in
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physics, computation, and computer modeling. This collection is organized by subject categories
and subcategories and delivers ready to run EJS models and source code that can be accessed from
a web browser as well as from the EJS DL taskbar icon. We will sometimes include references to
models in the ComPADRE digital library.

Figure 1.5: The OSP collection within the ComPADRE digital library. The collection is organized
in categories and subcategories. The entry for a model provides information about the model. The
collection can be accessed using EJS or a web browser.

Exercise 1.1. ComPADRE digital library

a. Use your web browser to visit the ComPADRE website (http://www.compadre.org/OSP) and
use the site’s online search tools to find the model shown in Figure 1.5. Download the jar file
for this model and run it.

b. Use the DL icon in EJS to connect to the Davidson Digital Library and download the models
for Chapter 2.
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1.6 How to use this book

Science students have a rich context in which to learn programming. The past several decades of
doing physics with computers has given us numerous examples that we can use to learn physics,
programming, and data analysis. Unlike many programming manuals, the emphasis of this book
is on learning by example. We will not discuss all aspects of Java, and this text is not a substitute
for a text on Java. Think of how you learned your native language. First you learned by example,
and then you learned more systematically.

Most chapters in this text begin with a brief background summary of the nature of a system
and the important questions. We then introduce the computer algorithms, new syntax as needed,
and discuss a sample program. The programs are meant to be read as text on an equal basis with
the discussions and are interspersed throughout the text. It is strongly recommended that all the
problems be read, because many concepts are introduced after you have had a chance to think
about the result of a simulation.

It is a good idea to maintain a computer-based notebook to record your programs, results,
graphical output, and analysis of the data. This practice will help you develop good habits for
future research projects, prevent duplication, organize your thoughts, and save you time. After a
while, you will find that most of your new programs will use parts of your earlier programs. Ideally,
you will use your files to write a laboratory report or a paper on your work. Guidelines for writing
a laboratory report are given in Appendix 1B.

Many of the problems in the text are open ended and do not lend themselves to simple “back
of the book” answers. So how will you know if your results are correct? How will you know
when you have done enough? There are no simple answers to either question, but we can give
some guidelines. First, you should compare the results of your program to known results whenever
possible. The known results might come from an analytical solution that exists in certain limits or
from published results. You also should look at your numbers and graphs, and determine if they
make sense. Do the numbers have the right sign? Are they the right order of magnitude? Do the
trends make sense as you change the parameters? What is the statistical error in the data? What
is the systematic error? Some of the problems explicitly ask you to do these checks, but you should
make it a habit to do as many as you can whenever possible.

How do you know when you are finished? The main guideline is whether you can tell a
coherent story about your system of interest. If you have only a few numbers and do not know
their significance, then you need to do more. Let your curiosity lead you to more explorations. Do
not let the questions asked in the problems limit what you do. The questions are only starting
points, and frequently you will be able to think of your own questions.

The following problem is an example of the kind of problems that will be posed in the following
chapters. Note its similarity to the questions posed on page 2. Although most of the simulations
that we will do will be on the kind of physical systems that you will encounter in other physics
courses, we will consider simulations in related areas, ranging from traffic flow, small world net-
works, and economics. Of course, unless you already know how to do simulations, you will have to
study the following chapters so that you will able to do problems like the following.
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Problem 1.1. Distribution of money

The distribution of income in a society, f(m), behaves as f(m) ∝ m−1−α, where m is the income
(money) and the exponent α is between 1 and 2. The quantity f(m) can be taken to be the number
of people who have an amount of money between m and m + ∆m. This power law behavior of
the income distribution often is referred to as Pareto’s law or the 80/20 rule (20% of the people
have 80% of the income), and was proposed by Vilfredo Pareto, an economist and sociologist, in
the late 1800’s. In the following we consider some simple models of a closed economy to determine
the relation between the microdynamics and the resulting macroscopic distribution of money.

a. Suppose that N agents (people) can exchange money in pairs. For simplicity, we assume that all
the agents are initially assigned the same amount of money m0, and the agents are then allowed
to interact. At each time step, a pair of agents i and j with money mi and mj is randomly
chosen and a transaction takes place. Again for simplicity, let us assume that mi → m′

i and
mj → m′

j by a random reassignment of their total amount of money, mi +mj , such that

m′
i = ϵ(mi +mj) (1.2a)

m′
j = (1− ϵ)(mi +mj), (1.2b)

where ϵ is a random number between 0 and 1. Note that this reassignment ensures that the
agents have no debt after the transaction, that is, they always are left with an amount m ≥ 0.
Simulate this model and determine the distribution of money among the agents after the system
has relaxed to an equilibrium state. Choose N = 100 and m0 = 1000.

b. Now let us ask what happens if the agents save a fraction, λ, of their money before the trans-
action. We write

m′
i = mi + δm (1.3a)

m′
j = mj − δm (1.3b)

δm = (1− λ)[ϵmj − (1− ϵ)mi]. (1.3c)

Modify your program so that this savings model is implemented. Consider λ = 0.25, 0.50, 0.75,
and 0.9. For some of the values of λ, as many as 107 transactions will need to be considered.
Does the form of f(m) change for λ > 0?

The form of f(m) for the model in Problem 1.1a can be found analytically and is known to
students who have had a course in statistical mechanics. However, the analytical form of f(m)
in Problem 1.1b is not known. More information about this model can be found in the article by
Patriarca, Chakraborti, and Kaski (see the references at the end of this chapter).

Problem 1.1 illustrates some of the characteristics of simulations that we will consider in the
following chapters. Implementing this model on a computer would help you to gain insight into its
behavior and might encourage you to explore variations of the model. Note that the model lends
itself to asking a relatively simple “what if” question, which in this case leads to qualitatively
different behavior. Asking similar questions might require modifying only a few lines of code.
However, such a change might convert an analytically tractable problem into one for which the
solution is unknown.
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Problem 1.2. Questions to consider

a. You are familiar with the fall of various objects near the earth’s surface. Suppose that a ball
is in the earth’s atmosphere long enough for air resistance to be important. How would you
simulate the motion of the ball?

b. Suppose that you wish to model a simple liquid such as liquid Argon. Why is such a liquid
simpler to simulate than water? What is the maximum number of atoms that can be simulated
in a reasonable amount of time using present computer technology? What is the maximum real
time that is possible to simulate? That is, if we run our program for a week of computer time,
what would be the equivalent time that the liquid has evolved?

c. Discuss some examples of systems that would be interesting to you to simulate. Can these
systems be analyzed by analytical methods? Can they be investigated experimentally?

d. An article by Post and Votta (see references) claims that “. . . (computers) have largely replaced
pencil and paper as the theorist’s main tool.” Do you agree with this statement? Ask some of
the theoretical physicists that you know for their opinions.

Appendix 1A: Using Easy Java Simulations.

EJS is a Java program that can be run under any operating system that supports a Java Virtual
Machine (VM). Because Java is platform independent, the EJS user interface on Macintosh OS X,
Unix, and Linux is almost identical to the Windows interface shown in this book.

To install and run EJS, do the following:

1. Install the Java Runtime Environment. EJS requires the Java Runtime Environment,
version 1.5 or later. The Java Runtime Environment might be already installed on your com-
puter, but, if not, use the copy provided on the CD that comes with this book or, even better,
visit the Java site at (http://java.sun.com) and follow the instructions there to download and
install the latest version for Linux, Unix, or Windows.

2. Copy EJS to your hard disk. You’ll find EJS in a compressed ZIP file namedEJS X.x yymmdd.zip
on the EJS website (http://www.um.es/fem/Ejs/ ). The X.x characters stand for the actual ver-
sion of the software, and yymmdd stands for the date this version was created. (For instance,
you can get EJS 4.1 081110.) Uncompress this file on your computer’s hard disk to create a
directory called EJS X.x (EJS 4.1 in the example). This directory contains everything that
is needed to run EJS.1

3. Run the EJS console. Inside the newly-created EJS X.x directory you will find the file
EjsConsole.jar. Double-click it to run the EJS console shown in Figure 1.6.

If double-clicking doesn’t run the console, open a system terminal window, change to the Ejs
directory, and type the command: java -jar EjsConsole.jar. You’ll need to fully qualify
the java command if it is not in your system’s PATH.
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Figure 1.6: The EJS console.

You should see the console (Figure 1.6) on your display. The EJS console is not part of EJS,
but a utility used to launch one or several instances (copies) of EJS and to perform other EJS -
related tasks. The console displays EJS program information and error messages. The console
creates an instance of EJS at start-up and exits automatically when you close the last running
instance of EJS. Other console features, such as its ability to process collections of EJS models,
are described in the EJS WiKi (http://www.um.es/fem/Ejs/ ).

Before the console can run EJS after installation, the file chooser displayed in Figure 1.7 will
appear, letting you choose the directory in your hard disk that you will use as a workspace.

Figure 1.7: Use File chooser to select your workspace directory.

EJS uses a workspace to organize your work. A workspace is a directory in your hard disk
where EJS stores a collection of user files such as models and their documentation. Inside a

1In Unix-like systems, the EJS X.x directory may be uncompressed as read-only. Enable write permissions for
the EJS X.x directory and all its subdirectories.
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workspace directory EJS creates four subdirectories:

� config is the directory for user-defined configuration and options files.

� export is the target directory where EJS generates files for distribution.

� output is the directory used by EJS to place temporary files generated when compiling a
simulation.

� source is the directory under which all your simulation (source and auxiliary) files must be
located.

When you first run EJS, the console asks you to choose a workspace directory. This directory
must be writable and may be anywhere on your hard disk. You can choose to use the workspace
included in the distribution, i.e., the workspace directory in the EJS X.x directory created when
you unzipped the EJS bundle. But it is recommended to create a new directory in your personal
directory. The file dialog that allows you to choose the workspace has a check box that, when
checked, will copy all the examples files of the distribution to the new workspace. Leave this
check box checked and you will find some subdirectories in the source directory of your workspace
which contains sample simulations. In particular, the ModelingScience directory includes the
EJS models described in this book.

You can create and use more than one workspace for different projects or tasks. The console
provides a selector to let you change the workspace in use and EJS will remember the current
workspace between sessions or even if you reinstall EJS. Because the workspace location is
stored in a user’s profile, EJS is well suited for a multi-user computer classroom.

The first time you run EJS the program will also ask you your name and affiliation. This step
is optional but recommended, because it will help you document your future simulations. You can
choose to input or modify this information later using the options icon of EJS ’ task bar.

We are now ready to discuss the EJS modeling tool, displayed with annotations in Figure 1.8.
Despite its simple interface, EJS has all the tools needed for a complete modeling cycle.

The taskbar on the right provides a series of icons to clear, open, search, and save a file,
configure EJS, and display program information and help. It also provides icons to run a simulation
and to package one or more simulations in a jar file. Right-clicking on taskbar icons invokes
alternative (but related) actions that will be described as needed. The bottom part of the interface
contains an output area where EJS displays informational messages. The central part of the
interface contains the workpanels where the modeling is done.

Easy Java Simulations provides three workpanels for modeling. The Description allows the
user to create and edit a multimedia HTML-based narrative that describes the model. Each
narrative page appears in a tabbed panel within the workpanel and right-clicking on the tab allows
the user to edit the narrative or to import additional narrative. The Model workpanel is dedicated
to the modeling process. We use this panel to create variables that describe the model, to initialize
these variables, and to write algorithms that describe how this model changes in time. View
workpanel is dedicated to building the graphical user interface, which allows users to control the
simulation and to display its output. We build the interface by selecting elements from palettes and
adding them to the view’s Tree of elements. For example, the Interface palette contains buttons,
sliders, and input fields, and the 2D Drawables palette contains elements to plot 2D data.
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Figure 1.8: The Easy Java Simulations user interface with annotations.

Inspecting the Simulation

To understand how the Description, Model, and View workpanels work together, we inspect and
run an existing simulation. Screen shots are no substitute for a demonstration, and you are
encouraged to follow along on your computer as you read.

Click on theOpen icon on the EJS taskbar. A file dialog similar to that in Figure 1.9 appears
showing the contents of your workspace’s source directory. Go to theModelingScience directory,
and open the Ch02 Intro subdirectory. You will find a file called MassAndSpring.xml inside
this directory. Select this file and click on the Open button of the file dialog.

Now, things come to life! EJS reads the MassAndSpring.xml file and initializes the work-
panels. Two new “Ejs windows” appear in your display as shown in Figure 1.10. A quick warning.
You can drag objects within these mock-up windows but this action will set the model’s initial
conditions. It is usually better to set initial conditions using a table of variables as described in
Section 1.6.

Impatient or precocious readers may be tempted to click on the green run icon on the
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Figure 1.9: The open file dialog lets you browse your hard disk and load an existing simulation.

taskbar to execute (run) our example before proceeding with this tutorial. Readers who do
so will no longer be interacting with EJS but with a compiled and running Java program.
In other words, the Mass and Spring model is running as a separate program independent of
EJS. Exit the running program by closing the Mass and Spring window or by right clicking
on the (now) red run icon on the EJS taskbar before proceeding.

The Description workpanel

Select the Description workpanel by clicking on the corresponding radio button at the top of EJS,
and you will see two pages of narrative for this simulation. The first page, shown in Figure 1.11,
contains a short discussion of the mass and spring model. Click on the Activities tab to view the
second page of narrative.

A Description is HTML multimedia text that provides information and instructions about
the simulation. HTML stands for HyperText Markup Language and is the most commonly used
protocol for formatting and displaying documents on the Web. EJS provides a simple HTML
editor that lets you create and modify pages within EJS. You can also import HTML pages into
EJS by right clicking on a tab in the Description workpanel. Description pages are an essential
part of the modeling process. These pages are distributed with the compiled model when the model
is distributed as a Java application or as an applet.

The Model workpanel

The Model workpanel is where the model is defined. In this simulation we study the motion of a
particle of mass m attached to one end of a massless spring of equilibrium length L. The spring
is fixed to the wall at its other end and is restricted to move in the horizontal direction. Although
the oscillating mass has a well known analytic solution, it is useful to start with a simple harmonic
oscillator model so that our output can be compared with the exact analytic result.
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Figure 1.10: EJS mock-up windows of the MassAndSpring simulation. The title bar shows that
they are Ejs windows and that the program is not running.

Our model assumes small oscillations so that the spring responds to a given (horizontal)
displacement x−L from its equilibrium length L with a force given by Hooke’s law, Fx = −k/(x−
L), where k is the elastic constant of the spring, which depends on its physical characteristics.
We use Newton’s second law to obtain a second-order differential equation for the position of the
particle:

d2 x

dt2
= − k

m
(x− L). (1.4)

Notice that we use a system of coordinates with its x-axis along the spring and with its origin at
the spring’s fixed end. The particle is located at x and its displacement from equilibrium x− L is
zero when x = L. We solve this system numerically to study how the state evolves in time.

Let’s examine how we implement the mass and spring model by selecting the Model radio
button and examining each of its five panels.

Declaration of variables

When implementing a model, a good first step is to identify, define, and initialize the variables that
describe the system. The term variable is very general and refers to anything that can be given a
name, including a physical constant and a graph. Figure 1.12 shows an EJS variable table. Each
row defines a variable of the model by specifying the name of the variable, its type, its dimension,
and its initial value.

Variables can be of several types depending on the data they hold. The most frequently used
types are boolean for true/false values, int for integers, double for high-precision numbers (≈ 16
significant digits), and String for text. We will use all these variable types in this book, but the
mass and spring model uses only variables of type double and boolean.
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Figure 1.11: The description pages for the mass and spring simulation. Click on a tab to display
the page. Right-click on a tab to edit the page.

Variables can be used as parameters, state variables, or inputs and outputs of the model. The
tables in Figure 1.12 define the variables used within our model. We have declared a variable for
the time, t, for the x-position of the particle, x, and for its velocity in the x-direction, vx. We
also define variables that do not appear in (1.4). The reason for auxiliary variables such as the
kinetic, potential, and total energies will be made clear in what follows. The bottom part of the
variables panel contains a comment field that provides a description of the role of each variable in
the model. Clicking on a variable displays the corresponding comment.

Initialization of the model

Correctly setting initial conditions is important when implementing a model because the model
must start in a physically realizable state. Our model is relatively simple, and we initialize it by
entering values (or simple Java expressions such as 0.5*m*vx*vx) in the Initial value column of
the table of variables. EJS uses these values when it initializes the simulation.

Advanced models may require an initialization algorithm. For example, a molecular dynamics
model may set particle velocities for an ensemble of particles. The Initialization panel allows
us to define Java code that performs the required computation. EJS converts this code into
a Java method2 and calls this method at start-up and whenever the simulation is reset. The
mass and spring does not require special initialization and this panel is empty.

2A Java method is similar to a function or a subroutine in procedural computer languages.
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Figure 1.12: The Model workpanel contains five subpanels. The subpanel for the definition of
mass and spring dynamical variables is displayed. Other tabs in this subpanel define additional
variables, such as the natural length of the spring L and the energy E.

The evolution of the model

The Evolution panel allows us to write the Java code that determines how the mass and spring sys-
tem evolves in time. We will use this option frequently for models not based on ordinary differential
equations. There is, however, a second option that allows us to enter ordinary differential equa-
tions (ODEs) such as (1.4), without programming. EJS provides a dedicated editor that lets us
specify differential equations in a format that resembles mathematical notation and automatically
generates the correct Java code.

Let’s see how the differential equation editor works for the mass and spring model. Because
ODE algorithms solve systems of first-order ordinary differential equations, a higher-order equation,
such as (1.4), must be recast into a first-order system. We can do so by treating the velocity as an
independent variable which obeys its own equation:

d x

dt
= vx (1.5)

d vx
dt

= − k

m
(x− L). (1.6)

The need for an additional differential equation explains why we declared the vx variable in our
table of variables.

Clicking on the Evolution panel displays the ODE editor shown in Figure 1.13. Notice that the
ODE editor displays (1.5) and (1.6) (using the * character to denote multiplication). Fields near
the top of the editor specify the independent variable t and the variable increment dt. Numerical
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Figure 1.13: The ODE evolution panel showing the mass and spring differential equation and the
numerical algorithm.

algorithms approximate the exact ODE solution by advancing the state in discrete steps and the
increment determines this step size. A dropdown menu at the bottom of the editor lets us select
numerical algorithm (the ODE solver) that advances the solution from the current value of the
time, t, to the next value, t + dt. The events field at the bottom of the panel tells us that we
have not defined any events for this differential equation.

The left-hand side of the evolution workpanel includes fields that determine how smoothly
and how fast the simulation runs. The frames per second (FPS) option, which can be selected by
using either a slider or an input field, specifies how many times per second we want the simulation
to repaint the screen. The steps per display (SPD) input field specifies how many times we want
to advance (step) the model before repainting. The current value of 20 frames per second produces
a smooth animation that, together with the prescribed value of one step per display and 0.05

for dt, results in a simulation which runs at (approximately) real time. We will almost always
use the default setting of one step per display. However, there are situations where the model’s
graphical output consumes a significant amount of processing power and where we want to speed the
numerical computations. In this case we can increase the value of the steps per display parameter
so that the model is advanced multiple times before the visualization is redrawn. The Autoplay
check box indicates whether the simulation should start when the program begins. This box is
unchecked so that we can change the initial conditions before starting the evolution.

The evolution workpanel solves the mass and spring ODE model without our having to explic-
itly program the numerical solution algorithm. The simulation advances the state of the system by
numerically solving the model’s differential equations using the midpoint algorithm. The algorithm
steps from the current state at time t to a new state at a new time t + dt before the visualization
is redrawn. The simulation repeats this evolution step 20 times per second on computers with
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modest processing power. The simulation may run slower and not as smoothly on computers with
insufficient processing power or if the computer is otherwise engaged, but it should not fail.3

Relations among variables

Not all variables within a model are computed using an algorithm in the Evolution workpanel.
Variables can also be computed after the evolution has been applied. We refer to variables that are
computed using the evolution algorithm as state variables or dynamical variables, and we refer to
variables that depend on these variables as auxiliary or output variables. In the mass and spring
model the kinetic, potential, and total energies of the system are output variables because they
are computed from state variables.

T =
1

2
mvx

2, (1.7)

V =
1

2
k(x− L)2, (1.8)

E = T + V. (1.9)

We say that there exist fixed relations among the model’s variables.

The Fixed relations panel shown in Figure 1.14 is used to write relations among variables. No-
tice how easy it is to convert (1.7) through (1.9) into Java syntax. Be sure to use the multiplication
character * and to place a semicolon at the end of each Java statement.

You may wonder why we do not write fixed relation expressions by adding a second code
page after the ODE page in the Evolution panel. After all, evolution pages execute sequentially
and a second evolution page would correctly update the output variables after every step. The
reason that the Evolution panel should not be used is that relations, such as energy conservation,
must always hold and there are other ways, such as mouse actions and keyboard input, to affect
state variables. For example, dragging the mass changes the model’s x variable and this change
affects the energy. EJS automatically evaluates the fixed relations after initialization, after every
evolution step, and whenever there is any user interaction with the simulation’s interface. For
this reason it is important that fixed relations among variables be written in the Fixed relations
workpanel.

Custom pages

There is a fifth panel in the Model workpanel labeled Custom. This panel can be used to define
methods (functions) that can be used throughout the model. This panel is empty because our
model doesn’t require additional methods.

The View workpanel

The third Easy Java Simulations workpanel is the View. This workpanel allows us to create a
graphical interface that includes visualization, user interaction, and program control with minimum

3Although the mass and spring model can be solved with a simple ODE algorithm, our numerical methods library
contains very sophisticated algorithms that can be applied to large systems of differential equations. See Chapter 4.
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Figure 1.14: Energy relations for the mass and spring model. Statements in a fixed relations panel
are evaluated when a user interacts with the program in any way and after every evolution step.

programming. Figure 1.10 shows the view for the mass and spring model. Select the View radio
button to examine how this view is created.

The right frame of the view workpanel of EJS, shown in Figure 1.15, contains a collection of
view elements, grouped by functionality. View elements are building blocks that can be combined
to form a complete user interface, and each view element is a specialized object with an on-screen
representation. To display information about a given element, click on its icon and press the F1
key or right-click and select the Help menu item. To create a user interface, we create a frame
(window) and add elements, such as buttons and graphs, using “drag and drop” as described in
Chapter 2.

The Tree of elements shown on the left side of Figure 1.15 displays the structure of the mass
and spring model’s user interface. Notice that the simulation has two windows, a Frame and a
Dialog, which appear on your computer screen. These elements belong to the class of container
elements whose primary purpose is to visually group (organize) other elements within the user
interface. The tree displays descriptive names and icons for these elements. Right-click on an
element of the tree to obtain a menu that helps the user change this structure.

Each view element has a set of internal parameters, called properties, which determine the
element’s appearance and behavior. We can edit these properties by double clicking on an element
in the tree to display a table known as a properties inspector. Appearance properties, such as color,
are often set to a constant value, such as RED. We can also use a variable from the model to set an
element’s property. This ability to connect (bind) a property to a variable without programming
is the key to turning our view into a dynamic and interactive visualization.

Let’s see how this procedure works in practice. Double-click on the massShape2D element (the
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Figure 1.15: The View workpanel showing the Tree of elements for the mass and spring user
interface.

“Shape2D” suffix added to the element’s name identifies the type of element) in the tree to display
the element’s properties inspector. This element is the mass that is attached at the free end of the
spring. The massShape2D’s table of properties appears as shown in Figure 1.16.

Notice the properties that are given constant values. The Style, Size X, Size Y, and Fill

Color properties produce an ellipse of size (0.2,0.2) units (which makes a circle) filled with the
color magenta. More importantly, the Pos X and Pos Y properties of the shape are bound to
the x and y variables of the model. This simple assignment establishes a bidirectional connection
between model and view. These variables change as the model evolves, and their shape follows
the x and y values. If the user drags the shape to a new location, the x and y variables in the
model change accordingly. Note that the Draggable property is only enabled when the animation
is paused.

Elements can also have action properties which can be associated with code. (Action prop-
erties have their labels displayed in red.) User actions, such as dragging or clicking, invoke their
corresponding action property, thus providing a simple way to control the simulation. As the user
drags the mass, the code on the On Drag property restricts the motion of the shape to the hor-
izontal direction by setting the y variable to 0. Finally, when the mouse button is released, the
following code is executed:

vx = 0 . 0 ; // s e t s the v e l o c i t y to zero
view . r e s e tTrace s ( ) ; // c l e a r s a l l p l o t s

Clicking on the icon next to the field displays a small editor that shows this code.
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Figure 1.16: The table of properties of the massShape2D element.

Because the On Release action code spans more than one line, the property field in the
inspector shows a darker (green) background. Other data types, such as boolean properties,
have different editors. Clicking the second icon displays a dialog window with a listing of
variables and methods that can be used to set the property value.

Exercise 1.2. Element inspectors The mass’ inspector displays different types of properties and
their possible values. Explore the properties of other elements of the view. For instance, the
displacementTrail2D and velocityTrail2D elements correspond to the displacement and veloc-
ity time plots in the second window of the view, respectively. What is the maximum number of
points that can be added to each trail?

The completed simulation

We have seen that Easy Java Simulations is a powerful tool that lets us express our knowledge of a
model at a high level of abstraction. When modeling the mass and spring, we first created a table
of variables that describes the model and initialized these variables using a column in the table. We
then used an evolution panel with a high-level editor for systems of first-order ordinary differential
equations to specify how the state advances in time. We then wrote relations to compute the
auxiliary variables that depend on the solution of the differential equations. Finally, the program’s
graphical user interface and high-level visualizations were created by dragging objects from the
Elements palette into the Tree of elements. Element properties were set using a properties editor
and some properties were associated with variables from the model.

It is important to note that the three lines of code on the Fixed relations workpanel (Fig-
ure 1.14) and the two lines of code in the particle’s action method are the only explicit Java code
needed to implement the model. Easy Java Simulations creates a complete Java program by pro-
cessing the information in the workpanels when the run icon is pressed as described in Section 1.6.
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Running the Simulation

It is time to run the simulation by clicking on the Run icon of the taskbar, . EJS generates the
Java code and compiles it, collects auxiliary and library files, and executes the compiled program,
all at a single click of a mouse.

Running a simulation initializes its variables and executes the fixed relations to insure that
the model is in a consistent state. The model’s evolution starts when the play/pause button in the
user interface is pressed. (The play/pause button displays the icon when the simulation is paused
and when it is running.) In our example the program executes a numerical method to advance
the harmonic oscillator differential equation by 0.05 time units and then executes the relations
code. Data are then passed to the graph and the graph is repainted. This process is repeated 20
times per second.

When running a simulation, EJS changes its Run icon to red and prints informational messages
saying that the simulation has been successfully generated and that it is running. Notice that the
two EJS windows disappear and are replaced by new but similar windows without the (Ejs window)
suffix in their titles. These views respond to user actions. Click and drag the particle to a desired
initial horizontal position and then click on the play/pause button. The particle oscillates about its
equilibrium point and the plot displays the displacement and velocity data as shown in Figure 1.17.

Stop the simulation and right-click the mouse over any of the drawing areas of the simulation.
In the popup menu that appears, select the Elements options->plottingPanel->Data Tool

entry to display and analyze the data generated by the model. The same popup menu offers other
run-time options, such as screen capture. To exit the program, close the simulation’s main window.

Figure 1.17: The mass and spring simulation displays an interactive drawing of the model and a
graph with displacement and velocity data.
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Distributing the Simulation

Simulations created with EJS are stand-alone Java programs that can be distributed without EJS
for others to use. The easiest way to distribute a program is to package it in a single executable

jar file by clicking on the Package icon, . A file browser appears that lets you choose a name for
the self-contained jar package. The default target directory is the export directory at the root of
your workspace, but you can choose any directory and any package name. The stand-alone jar file
is ready to be distributed. Other distribution mechanisms are available by right-clicking on the
icon.

Exercise 1.3. Distribution of a model Click on the Package icon on the taskbar to create a stand-
alone jar archive of the mass and spring simulation. Copy this jar file into a working directory
separate from your EJS installation. Close EJS and verify that the simulation runs as a stand-alone
application.

Although the mass and spring jar file is a ready to use and ready to distribute Java application,
an important pedagogic feature is that this jar file is created in such a way that users can return
to EJS at any time to examine, modify, and adapt the model. (EJS must, of course, be installed.)
The jar file contains a small Extensible Markup Language (XML) description of each model and
right clicking on a drawing panel within the model brings in a popup menu with an option to
copy this file into EJS. This action will extract the required files from the jar, search for the EJS
installation in the user’s hard disk, copy the files into the correct location, and run EJS with
this simulation loaded. If a model with the same name already exits, a dialog asks if it should
be replaced. The user can then inspect, run, and modify the model just as we are doing in this
chapter. A student can, for example, obtain an example or a template from an instructor and can
later repackage the modified model into a new jar file for submission as a completed problem.

Exercise 1.4. Extracting a model Run the stand-alone jar file containing the mass and spring
model created in Exercise 1.3. Right click on the model’s plot or drawing and select the Open Ejs
Model item from the popup menu to copy the packaged model back into EJS.

EJS is designed to be both a modeling and an authoring tool. We suggest that you experiment
with it to learn how you can create and distribute your own models as you work through the
exercises, problems, and projects in this book.

Appendix 1B: Documentation and Reports

Documentation and laboratory reports should reflect clear writing style and obey proper rules of
grammar and correct spelling. Write in a manner that can be understood by another person who
has not researched the model. Documentation is packed with the model and is often duplicated in
the laboratory report. In the following, we give a suggested format for your documentation and
reports.

Title, authorship, and credits. Give your model a meaningful name and enter bibliographic in-
formation into the EJS information dialog (top button on the EJS toolbar) and on the first
documentation page.
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Introduction. Briefly summarize the nature of the physical system, the basic numerical method
or algorithm, and the interesting or relevant questions. This summary should be included in
Documentation workpanel so that is it is packaged with the compiled model.

Model. Describe the algorithm and how it is implemented. In some cases this explanation can be
given in the EJS workpanels. Variables defined in tables should be given meaningful names
and their purpose should be stated in the comment field. Code should be annotated in a
way that is as self-explanatory as possible. Be sure to discuss any important features of your
implementation.

Verification of program. Confirm that your model is not incorrect by considering special cases
and by giving at least one comparison to a hand calculation or known result.

Data. Show the results of some typical runs in graphical or tabular form. Additional runs can
be included in an appendix. All runs should be labeled, and all tables and figures must be
referred to in the body of the text. Each figure and table should have a caption with complete
information, for example, the value of the time step.

Analysis. In general, the analysis of your results will include a determination of qualitative and
quantitative relationships between variables, and an estimation of numerical accuracy.

Interpretation. Summarize your results and explain them in simple physical terms whenever
possible. Specific questions that were raised in the assignment should be addressed here.
Also give suggestions for future work or possible extensions. It is not necessary to answer
every part of each question in the text.

Critique. Summarize the important physical concepts for which you gained a better understanding
and discuss the numerical or computer techniques you learned. Make specific comments on
the assignment and your suggestions for improvements or alternatives.

Log. Keep a log of the time spent on each assignment and include it with your report.
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