
Totally Random – at least almost

Tim Chartier

CSC 231 @

April 17, 2009

Tim Chartier Totally Random – at least almost



Random Numbers

In ancient times, rolling dice, flipping a coin, or
shuffling playing cards were among the methods that
served to generate random results.

Today, we concern ourselves with generating a
sequence of numbers with the intent that the
sequence does not have any (or less rigorously, no
easily discernable) patterns.

Tim Chartier Totally Random – at least almost



Living in sin

Distinguishing whether a random number generator
truly produces a random sequence is often difficult to
decide.
However, any deterministic computation is generally
considered not to be a “true” random number
generator.
Encapsulating this reality, John von Neumann once
said

“Anyone who uses arithmetic methods to pro-
duce random numbers is in a state of sin.”

Tim Chartier Totally Random – at least almost



Pseudorandomness

All is not lost since pseudorandom number
generators exist that satisfy all the statistical
properties of true random numbers. However, the
output is deterministic and in that sense predictable.
Note, today will be only an introduction to this area of
computer science.

Tim Chartier Totally Random – at least almost



LCGs

We introduce to create a sequence of pseudorandom
numbers with linear congruential generators (LCGs).
We will see their sensitivity to input parameters but
also succeed in producing a uniform distribution.
Many applications require more sophisticated
techniques.

Tim Chartier Totally Random – at least almost



Defining an LCG

An LCG is defined by the recursive relation:

xi+1 = (axi + c) mod m (i = 0, 1, 2, . . .)

In order to produce the sequence of numbers, a, c, m and
x0 (also known as the seed) must be specified.

Then the random number between 0 and 1 is defined as:

Ri =
xi

m
(i = 0, 1, 2, . . .)

While it is possible to generate a 0, a random number
from this method cannot equal 1.

Tim Chartier Totally Random – at least almost



Example

Again, xi+1 = (axi + c) mod m (i = 0, 1, 2, . . .) and
Ri = xi

m (i = 0, 1, 2, . . .).

Let x0 = 30, a = 13, c = 55, and m = 100.

R0 = 0.30⇒ x1 = (13 ∗ 30 + 55) mod 100 = 45. Therefore
R1 = 45/100 = 0.45.

Tim Chartier Totally Random – at least almost



Your Turn

Find R2, R3 and R4.

So, x2 = 13 ∗ x1 + 55 mod 100 = 5840 mod 100 = 40.
Therefore, R2 = 0.40.
Next, x3 = 13 ∗ x2 + 55 mod 100 = 575 mod 100 = 75.
Therefore, R3 = 0.75.
Finally,
x4 = 13 ∗ x3 + 55 mod 100 = 1030 mod 100 = 30.
Therefore, R4 = 0.30.

Tim Chartier Totally Random – at least almost



Your Turn

Find R2, R3 and R4.

So, x2 = 13 ∗ x1 + 55 mod 100 = 5840 mod 100 = 40.
Therefore, R2 = 0.40.
Next, x3 = 13 ∗ x2 + 55 mod 100 = 575 mod 100 = 75.
Therefore, R3 = 0.75.
Finally,
x4 = 13 ∗ x3 + 55 mod 100 = 1030 mod 100 = 30.
Therefore, R4 = 0.30.

Tim Chartier Totally Random – at least almost



uniform or !(uniform)

Goal: A uniform distribution between 0 and 1. That is, all
numbers between 0 and 1 are equally likely to be
produced by our random number generator.

We will determine this, at least empirically, by producing
10,000 random numbers from this recurrence relation.
The histogram of the sequence of 1000 numbers
produced by this recurrence is given below.

Tim Chartier Totally Random – at least almost



Far from uniform

Clearly, this is not uniform. Without looking at the
next slide, why? Look at the previous slide and see if
you can see it.
Our goal of a uniform distribution failed. Note that
R4 = 0.30 = R0, which leads to Ri = Ri+4 for i ≥ 0.
This LCG is said to have period 4.

Tim Chartier Totally Random – at least almost



Java code

Java code that will compute random numbers with an
LCG is contained on Blackboard.
You will find the code in LcgGenerator.java.
This code will not produce a histogram. You will learn
to adapt this code for visualization using Easy Java
Simulation software with Dr. Christian.

Tim Chartier Totally Random – at least almost



More insight

An LCG will have a full period (note the period is always
less than or equal to m) if:

c and m are relatively prime (do not contain common
prime factors),
a− 1 is divisible by all prime factors of m,
a− 1 is a multiple of 4 if m is a multiple of 4,
m > max(a, c, x0), and
a > 0, b > 0.

LCGs are sensitive to the choice of c, m and a.

Tim Chartier Totally Random – at least almost



Your Turn

Take a few moments to see if you can determine which of
these properties was violated in the previous example.

In the previous example, a− 1 = 12 is not divisible by 5
which is a prime factor of m = 100.

Tim Chartier Totally Random – at least almost



Your Turn

Take a few moments to see if you can determine which of
these properties was violated in the previous example.

In the previous example, a− 1 = 12 is not divisible by 5
which is a prime factor of m = 100.

Tim Chartier Totally Random – at least almost



Example

Consider a = 1664525, b = 1013904223, m = 232

and again x0 = 30.
As before, we produce 10,000 random numbers for
these parameters to the LCG and plot the resulting
histogram:

Tim Chartier Totally Random – at least almost



Place for LCGs

LCGs are not reliable for applications requiring
high-quality randomness. For example, Monte Carlo
simulations, which we will look at briefly to motivate
another topic, depend on randomness and LCGs do
not ensure quality in the results. Cryptographic
applications also require more sophisticated
generators.
Still, LCGs have a place. For example, a video game
console may find an LCG to be a suitable and
efficient generator.
Note that rigorous numerical analysis is often needed
to have confidence in pseudorandom generators.

Tim Chartier Totally Random – at least almost


